• 제목/요약/키워드: shear-wall structure

검색결과 334건 처리시간 0.025초

중저층 상부벽식 하부골조 구조의 고유주기 산정식에 관한 연구 (Study on the Equation of Natural Period of Middle and Low Rise Building of Upper-Walled Lower Frame Type)

  • 유석형
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제25권5호
    • /
    • pp.60-67
    • /
    • 2021
  • 국토교통부(2018)의 「필로티 건축물 구조설계 가이드라인」에서는 국내 필로티 형식의 다세대 주택과 같이 중저층의 상부벽식 하부 골조구조를 이루고 있는 복합구조의 고유주기를 안전성을 고려하여 상부 벽식구조에 해당하는 식을 적용하도록 제시하고 있다. 그러나 현행 벽식구조의 고유주기 산정 기준식은 주로 휨 거동하는 고층 벽식구조를 대상으로 한 실측 결과를 통하여 제정된 것으로서 벽체가 전단거동을 하는 국내 4층이하 필로티형 다세대 주택에는 적합하지 않을 것으로 사료되며, 또한, Park et al. (2000)은 해석적 연구를 통하여 10층 이상의 복합구조물의 고유주기에서 하부 골조구조의 영향이 상부 벽식구조보다 크게 작용하고 있음을 확인하였다. 따라서 본 연구에서는 중저층 필로티 구조의 고유주기에 미치는 하부골조의 영향을 검토하기 위하여 상부 벽식구조의 전단 및 휨 강성과 하부골조구조의 전단강성을 변수로 하는 대상 구조물들에 대하여 유한요소 모델을 이용한 고유치 해석과 고유주기 산정 근사식 그리고 현행 고유주기 산정 기준식을 이용하여 고유주기를 산출하고 비교하였다. 비교결과 하부골조의 전단강성변화가 상부벽체의 휨 또는 전단강성의 변화보다 건물 전체의 고유주기에 더 큰 영향을 주는 것으로 나타났다.

SC구조 벽-바닥 접합부의 내력 및 거동 특성 (Behavior and Strength of Wall-Slab Connection in SC Structure)

  • 김형국;김우범;김원기
    • 한국강구조학회 논문집
    • /
    • 제20권2호
    • /
    • pp.347-354
    • /
    • 2008
  • SC 구조는 시공 및 제작성이 우수하여 최근 국내외 원자력 발전소 건설에 적용되고 있는 구조이다. SC 구조의 벽 -바닥 접합부가 갖는 전단력 전달기구를 확인하기 위하여 4개의 실험체에 대하여 실험을 수행하고, 접합부의 거동특성을 분석하였다. 이를 바탕으로 접합부의 전단내력 평가를 위한 해석적 연구를 수행하였다. 그 결과, 실험 결과와 해석결과 간의 근접성을 확인하였고, 접합부의 내력 및 파괴모드를 도출하였다. 그리고 전단플레이트의 두께와 벽면 마찰력의 변화가 접합부 전단내력에 미치는 영향을 파악한 결과, 제안한 접합부 내력식이 보수적인 값을 제시하고 있음을 확인하였다.

필로티형 콘크리트 전단벽 구조물의 능력스펙트럼기반 손상도 기준에 대한 연구 (A Study on Damage State Criteria based on Capacity Spectrum of Piloti-type RC Shear Wall Structures)

  • 황지현;박기태;박태원
    • 한국산학기술학회논문지
    • /
    • 제14권10호
    • /
    • pp.5199-5205
    • /
    • 2013
  • 최근 증가한 지진의 발생빈도에 비해 현존하는 건물 중 내진설계가 되지 않았거나 노후화, 구조특성 등으로 적절한 내진성능을 보유하지 않은 건물은 매우 많다. 특히 우리나라 건물 유형 중 하나인 필로티형 콘크리트 전단벽 구조물은 대부분 1층이 연층(soft story) 및 약층(weak story)으로 분류되기 때문에 지진에 의한 횡력에 저항할 수 있는 전단기능이 크게 결여되어 지진에 매우 취약하다. 본 연구에서는 필로티형 콘크리트 전단벽 구조물의 손상도 기준에 관한 연구를 수행하였다. 전단벽 시스템의 대표 유형 건물을 선정하여 구조해석을 통해 능력스펙트럼을 산출하였으며 능력스펙트럼의 형태를 기준으로 손상도 기준을 정의하였다.

Free vibration analysis of asymmetric shear wall-frame buildings using modified finite element-transfer matrix method

  • Bozdogan, Kanat B.
    • Structural Engineering and Mechanics
    • /
    • 제46권1호
    • /
    • pp.1-17
    • /
    • 2013
  • In this study, the modified finite element- transfer matrix methods are proposed for free vibration analysis of asymmetric structures, the bearing system of which consists of shear wall-frames. In the study, a multi-storey structure is divided into as many elements as the number of storeys and storey masses are influenced as separated at alignments of storeys. The shear walls and frames are assumed to be flexural and shear cantilever beam structures. The storey stiffness matrix is obtained by formulating the governing equation at the center of mass for the shear walls and the frames in the i.th floor. The system transfer matrix is constructed in the dimension of $6{\times}6$ by transforming the obtained stiffness matrix. Thus, the dimension, which is $12n{\times}12n$ in classical finite elements, is reduced to the dimension of $6{\times}6$. To study the suitability of the method, the results are assessed by solving two examples taken from the literature.

A numerical study on behavior of CFRP strengthened shear wall with opening

  • Behfarnia, Kiachehr;Shirneshan, Ahmadreza
    • Computers and Concrete
    • /
    • 제19권2호
    • /
    • pp.179-189
    • /
    • 2017
  • Concrete shear walls are one of the major structural lateral resisting systems in buildings. In some cases, due to the change in the occupancy of the structure or functional requirements like architectural and even mechanical ones, openings need to be provided and installed in structural walls after their construction. Providing these openings may significantly influence the structural behavior of the constructed wall. This paper considers the results of a nonlinear finite element analysis of shear walls with opening strengthened by carbon fiber reinforced polymer (CFRP) strips with different configurations. Details of bond-slip constitutive model of link elements to simulate the connections of FRP strips to concrete surface is presented. The proposed model in this research has been validated using experimental results available in the literature. The results indicated that the proposed configuration of CFRP strips significantly improved the lateral resistance and deformation capacity of the shear walls with opening.

지진에 의한 원전 보조건물 전단벽의동적 응답 특성 추정 (Seismic Response Characterization of Shear Wall in Auxiliary Building of Nuclear Power Plant)

  • 모터 라만;타미나 나하르;백건휘;김두기
    • 한국지진공학회논문집
    • /
    • 제25권3호
    • /
    • pp.93-102
    • /
    • 2021
  • The dynamic characterization of a three-story auxiliary building in a nuclear power plant (NPP) constructed with a monolithic reinforced concrete shear wall is investigated in this study. The shear wall is subjected to a joint-research, round-robin analysis organized by the Korea Atomic Energy Research Institute, South Korea, to predict seismic responses of that auxiliary building in NPP through a shake table test. Five different intensity measures of the base excitation are applied to the shaking table test to get the acceleration responses from the different building locations for one horizontal direction (front-back). Simultaneously to understand the global damage scenario of the structure, a frequency search test is conducted after each excitation. The primary motivation of this study is to develop a nonlinear numerical model considering the multi-layered shell element and compare it with the test result to validate through the modal parameter identification and floor responses. In addition, the acceleration amplification factor is evaluated to judge the dynamic behavior of the shear wall with the existing standard, thus providing theoretical support for engineering practice.

Seismic performance assessments of precast energy dissipation shear wall structures under earthquake sequence excitations

  • Zhang, Hao;Li, Chao;Wang, Zhi-Fang;Zhang, Cai-Yan
    • Earthquakes and Structures
    • /
    • 제18권2호
    • /
    • pp.147-162
    • /
    • 2020
  • This paper presents a novel precast energy dissipation shear wall (PEDSW) structure system that using mild steel dampers as dry connectors at the vertical joints to connect adjacent wall panels. Analytical studies are systematically conducted to investigate the seismic performance of the proposed PEDSW under sequence-type ground motions. During earthquake events, earthquake sequences have the potential to cause severe damage to structures and threaten life safety. To date, the damage probability of engineering structures under earthquake sequence has not been included in structural design codes. In this study, numerical simulations on single-story PEDSW are carried out to validate the feasibility and reliability of using mild steel dampers to connect the precast shear walls. The seismic responses of the PEDSW and cast-in-place shear wall (CIPSW) are comparatively studied based on nonlinear time-history analyses, and the effectiveness of the proposed high-rise PEDSW is demonstrated. Next, the foreshock-mainshock-aftershock type earthquake sequences are constructed, and the seismic response and fragility curves of the PEDSW under single mainshock and earthquake sequences are analyzed and compared. Finally, the fragility analysis of PEDSW structure under earthquake sequences is performed. The influences of scaling factor of the aftershocks (foreshocks) to the mainshocks on the fragility of the PEDSW structure under different damage states are investigated. The numerical results reveal that neglecting the effect of earthquake sequence can lead to underestimated seismic responses and fragilities, which may result in unsafe design schemes of PEDSW structures.

강재 접합용 고전단 링앵커의 형상 개발과 전단실험 (Shape Decision and Shear Experiment of High-Shear Ring Anchor for Steel-Concrete Connection)

  • 전상현;김문길
    • 도시과학
    • /
    • 제7권2호
    • /
    • pp.29-36
    • /
    • 2018
  • The demand for reinforcement in accordance with remodeling, seismic retrofit, and change of use of the existing structure is increasing. Originally, shear wall new and extension method has been adopted a lot as seismic retrofit methods. Recently, dry seismic retrofit method that uses structural steel is mostly adopted in order to minimize spatiotemporal aspect and underpinning that occurs when a construct shear wall. We redesigned the form of old and new concrete joint high-shear ring anchor that was developed according to recent reinforcement method and determined construction method. Shear tests were performed on High-Shear Ring Anchor for steel-concrete connection. Comparison with 4 tests shows that the average of test-to-prediction ratios is 1.01.

FE-BEM을 결합한 벽체의 해석모델 개발 (Development of a Wall Analysis Model Grafting FE-BEM)

  • 정남수;최원;이호재;김한중;이정재;김종옥
    • 한국농공학회논문집
    • /
    • 제46권5호
    • /
    • pp.61-68
    • /
    • 2004
  • Methodologies of the finite element and boundary element are combined to achieve an efficient and accurate analysis model of frame structure containing shear wall. This model analyzes the frame by employing the finite element method and the shear wall by boundary element method. This study is applicable to a specific situation, where the boundary element is surrounded by finite elements. By employing FE dominant method in which boundary stiffness matrix is transformed into finite element stiffness matrix, boundary element and finite element method are combined to analyze frame structure with walls.

전단연결재를 적용한 무기계 경량기포콘크리트(ALC) 샌드위치 외벽 패널의 단열성능에 미치는 영향요인 분석 (An Analysis of Factors Influencing Insulation Performance of Inorganic Autoclaved Lightweight Concrete Sandwich Wall Panels Using Shear Connectors)

  • 강동화;강동화;신동현;김형준
    • 대한건축학회논문집:구조계
    • /
    • 제34권1호
    • /
    • pp.79-87
    • /
    • 2018
  • The purpose of this study was to analyze factors influencing insulation performance of inorganic Autoclaved Lightweight Concrete(ALC) sandwich wall panels with the application of shear connectors. To analyze the effect of shear connectors on the thermal performance of sandwich wall panels, heat transfer analysis was conducted by using the three-dimensional heat transfer simulation software. Four types of shear connector such as Pin, Clip, Grid, and Truss were selected for insulation performance analysis. Thermal bridge coefficient was calculated by varying typical panel thickness and shear connector thickness and materials such as steel, aluminum, and stainless steel. The results showed that Grid and Truss type widely distributed along the section of sandwich wall panel had a great influence on the thermal bridge coefficient by changing the influence factors. Based on the results of thermal and structural performance analysis, effective heat transmission coefficient of the sandwich wall panel satisfying the passive house insulation criteria was calculated. As a result, it was found that heat transmission coefficient was increased from $0.132W/m^2{\cdot}K$ to $0.141{\sim}0.306W/m^2{\cdot}K$ depending on the shear connector types and materials. In the majority of cases, the passive house insulation criteria was not satisfied after using shear connectors. The results of this study were likely to vary according to how influence factors were set, but it is important to apply the methods that reduce the thermal bridge when there would be a possibility of greatly affecting the insulation performance.