• Title/Summary/Keyword: shear structure

Search Result 2,353, Processing Time 0.03 seconds

State-of-art on Its Application and Errors in Pushover Analysis of Building Structures (건축물의 내진설계에서 정적 비선형해석의 적용과 오차에 대한 고찰)

  • Jun, Dae-Han;Song, Ho-San
    • Journal of Korean Association for Spatial Structures
    • /
    • v.5 no.1 s.15
    • /
    • pp.99-105
    • /
    • 2005
  • The pushover analysis is becoming a popular tool for seismic design of building structures. In this paper the state-of-art on static nonlinear analysis of building structures is presented with the emphasis on the effects of analysis parameters; i. e., lateral load patterns, modeling of members, and analysis computer programs. The analysed results may have variation even if a same structure is analysed. This paper is to investigate how large the variation is and what the main causes of the variation are. The difference of analysed results, the resultant variation of lateral story shear force and flexural strength of structural members are discussed. The pushover analysis procedure are routinely used in the seismic design of building structures, but some problems must yet be clarified, such as the effects to evaluate the parameters of analysis on the basis of a lateral load patterns and modeling of members.

  • PDF

Unsteady Turbulent Flow with Sudden Pressure Gradient Change

  • Chung Yongmann M.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.46-47
    • /
    • 2003
  • Direct numerical simulations are performed for a turbulent flow subjected to a sudden change in pressure gradient. The calculations are started from a fully-developed turbulent channel flow at $Re_{\tau}=180$. The pressure gradient of the channel flow is then changed abruptly. The responses of the turbulence quantities (e.g., turbulence intensities, Reynolds shear stress, and vorticity fluctuations) and the near-wall turbulence structure to the pressure gradient change are investigated. It is found that there are two different relaxations: a fast relaxation at the early stage and a slow one at the later stage. The early response of the velocity fluctuations shows an anisotropic response of the near-wall turbulence.

  • PDF

A Numerical Analysis of Supersonic Impinging Jet Flows on Curved Surfaces using Upwind Wavier-Stokes Method (Upwind Navier-Stokes 방법을 이용한 굴곡면에 충돌하는 초음속 제트유동의 수치 해석적 연구)

  • Seo Jeong Il;Song Dong Joo
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.229-232
    • /
    • 2002
  • For the purpose of Thermal Protection Material design problem, a numerical analysis of axisymmetric high temperature supersonic impinging jet flows of exhaust gas from combustor on curved surfaces has been accomplished. A modifed CSCM Upwind Navier-Stokes method which is able to cure the carbuncle Phenomena has been developed to study strong shock wave structure and thermodynamic wall properties such as pressure and heat transfer rate on various curved surfaces. The results show that the maximum heat transfer rate which is the most important parameter affecting thermo-chemical surface ablation on the plate did not occur at the center of jet impingement, but rather on a circle slightly away from the center of impingement and the shear stress distribution alone the wall is similar to the wall heat transfer late distribution.

  • PDF

Effect of compression on the response of a magneto-rheological suspension

  • See, Howard;Mackenzie, Steven;Chua, Boon Teck
    • Korea-Australia Rheology Journal
    • /
    • v.18 no.3
    • /
    • pp.121-126
    • /
    • 2006
  • A carbonyl iron-based magneto-rheological suspension was compressed in the direction of the applied magnetic field and the change in rheological properties was measured. It was found that the compression did not have a large effect on the magneto-rheological response, which is in contrast to recent reports in the literature describing an almost order of magnitude increase in the shear yield stress. The difference can be attributed to the latter test's use of a sliding wedge apparatus which imparts considerable shearing to the sample during the compression.

Thermal Stability Analysis of Flexible Beam Spacecraft Appendage (위성체 유연 보 구조물의 열 안정성 해석)

  • 윤일성;송오섭
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.399-406
    • /
    • 2001
  • Thermally induced vibration response of composite thin walled beams is investigated. The thin-walled beam model incorporates a number of nonclassical effects of transverse shear, primary and secondary warping, rotary inertia and anisotropy of constituent materials. Thermally induced vibration response characteristics of a composite thin walled beam exhibiting the circumferentially uniform system(CUS) configuration are exploited in connection with the structural bending-torsion coupling resulting from directional properties of fiber reinforced composite materials and from ply stacking sequence. A coupled thermal structure analysis that includes the effects of structural deformations on heating and temperature gradient is investigated.

  • PDF

State-of-art on Its Application and Errors in Pushover Analysis of Building Structures (건축물의 내진설계에서 정적 비선형해석의 적용과 오차에 대한 고찰)

  • Jun, Dae-Han;Song, Ho-San
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2004.05a
    • /
    • pp.103-110
    • /
    • 2004
  • The pushover analysis is becoming a popular tool for seismic design of building structures. In this paper the state-of-art on static nonlinear analysis of building structures is presented with the emphasis on the effects of analysis parameters; i. e., lateral load patterns, modeling of members, and analysis computer programs. The analysed results may have variation even if a same structure is analysed. This paper is to investigate how large the variation is and what the main causes of the variation are. The difference of analysed results, the resultant variation of lateral story shear force and flexural strength of structural members are discussed. The pushover analysis procedure are routinely used in the seismic design of building structures, but some problems must yet be clarified, such as the effects to evaluate the parameters of analysis on the basis of a lateral load patterns and modeling of members.

  • PDF

Seismic study of buildings with viscoelastic dampers

  • Pong, W.S.;Tsai, C.S.
    • Structural Engineering and Mechanics
    • /
    • v.3 no.6
    • /
    • pp.569-581
    • /
    • 1995
  • In this paper, the seismic behavior of a 10-story building equipped with viscoelastic dampers is analyzed. The effects of ambient temperature, the thickness, the total area, and the position of the viscoelastic dampers are studied. Results indicate that the energy-absorbing capacity of viscoelastic damper decreases with increasing the ambient temperature. The thickness and the total area of viscoelastic dampers also affect the seismic mitigation capacity. The thickness cannot be too small, which is not effective in vibration reduction, nor can it be too large, which not only increases the cost but also reduces the seismic resistance. The total area of viscoelastic dampers should be determined properly for optimum damper performance at the most economical design. The mounting position of viscoelastic dampers also influences the structure's seismic performance. Numerical results show that, if properly equipped, the VE dampers can reduce the structural response both floor displacement and story shear force and increase the overall level of damping in structures during earthquakes.

Influence of microstructure, heterogeneity and internal friction on SH waves propagation in a viscoelastic layer overlying a couple stress substrate

  • Sharma, Vikas;Kumar, Satish
    • Structural Engineering and Mechanics
    • /
    • v.57 no.4
    • /
    • pp.703-716
    • /
    • 2016
  • In this paper, we have investigated shear horizontal wave propagation in a layered structure, consisting of granular macromorphic rock (Dionysos Marble) substrate underlying a viscoelastic layer of finite thickness. SH waves characteristics are affected by the material properties of both substrate and the coating. The effects of microstructural parameter "characteristic length" of the substrate, along with heterogeneity, internal friction and thickness of viscoelastic layer are studied on the dispersion curves. Dispersion equation for SH wave is derived. Real and damping phase velocities of SH waves are studied against dimensionless wave number, for different combinations of various parameters involved in the problem.

Analysis of light-frame, low-rise buildings under simulated lateral wind loads

  • Fischer, C.;Kasal, B.
    • Wind and Structures
    • /
    • v.12 no.2
    • /
    • pp.89-101
    • /
    • 2009
  • The Monte Carlo procedure was used to simulate wind load effects on a light-frame low-rise structure of irregular shape and a main wind force resisting system. Two analytical models were studied: rigid-beam and rigid-plate models. The models assumed that roof diaphragms were rigid beam or rigid plate and shear walls controlled system behavior and failure. The parameters defining wall stiffness, including imperfections, were random and included wall stiffness, wall capacity and yield displacements. The effect of openings was included in the simulation via a set of discrete multipliers with uniform distribution. One and two-story buildings were analyzed and the models can be expanded into multiple-floor structures provided that the assumptions made in this paper are not violated.

Vibration and stability of embedded cylindrical shell conveying fluid mixed by nanoparticles subjected to harmonic temperature distribution

  • Shokravi, Maryam;Jalili, Nader
    • Wind and Structures
    • /
    • v.25 no.4
    • /
    • pp.381-395
    • /
    • 2017
  • Nonlinear vibration and instability of cylindrical shell conveying fluid-nanoparticles mixture flow are studied in this article. The surrounding elastic medium is modeled by Pasternak foundation. Mixture rule is used for obtaining the effective viscosity and density of the fluid-nanoparticles mixture flow. The material properties of the elastic medium and cylindrical shell are assumed temperature-dependent. Employing first order shear deformation theory (FSDT), the motion equations are derived using energy method and Hamilton's principal. Differential quadrature method (DQM) is used for obtaining the frequency and critical fluid velocity. The effects of different parameters such as volume percent of nanoparticles, boundary conditions, geometrical parameters of cylindrical shell, temperature change, elastic foundation and fluid velocity are shown on the frequency and critical fluid velocity of the structure. Results show that with increasing volume percent of nanoparticles in the fluid, the frequency and critical fluid velocity will be increases.