• Title/Summary/Keyword: shear deformable model

Search Result 56, Processing Time 0.02 seconds

Parametric resonance of composite skew plate under non-uniform in-plane loading

  • Kumar, Rajesh;Kumar, Abhinav;Panda, Sarat Kumar
    • Structural Engineering and Mechanics
    • /
    • v.55 no.2
    • /
    • pp.435-459
    • /
    • 2015
  • Parametric resonance of shear deformable composite skew plates subjected to non-uniform (parabolic) and linearly varying periodic edge loading is studied for different boundary conditions. The skew plate structural model is based on higher order shear deformation theory (HSDT), which accurately predicts the numerical results for thick skew plate. The total energy functional is derived for the skew plates from total potential energy and kinetic energy of the plate. The strain energy which is the part of total potential energy contains membrane energy, bending energy, additional bending energy due to additional change in curvature and shear energy due to shear deformation, respectively. The total energy functional is solved using Rayleigh-Ritz method in conjunction with boundary characteristics orthonormal polynomials (BCOPs) functions. The orthonormal polynomials are generated for unit square domain using Gram-Schmidt orthogonalization process. Bolotin method is followed to obtain the boundaries of parametric resonance region with higher order approximation. These boundaries are traced by the periodic solution of Mathieu-Hill equations with period T and 2T. Effect of various parameters like skew angle, span-to-thickness ratio, aspect ratio, boundary conditions, static load factor on parametric resonance of skew plate have been investigated. The investigation also includes influence of different types of linearly varying loading and parabolically varying bi-axial loading.

A Coupled Analysis of Smart Plate Under Electro-Mechanical Loading Using Enhanced Lower-Order Shear Deformation Theory (개선된 저차 전단 변형 이론을 이용한 전기, 기계 하중을 받는 스마트 복합재 구조물의 연성 해석)

  • Oh, Jin-Ho;Cho, Maeng-Hyo;Kim, Jun-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.1 s.256
    • /
    • pp.121-128
    • /
    • 2007
  • Enhanced lower order shear deformation theory is developed in this study. Generally, lower order theories are not adequate to predict accurate deformation and stress distribution through the thickness of laminated plate. For the accurate prediction of detailed stress and deformation distributions through the thickness, higher order zigzag theories have been proposed. However, in most cases, simplified zigzag higher order theory requires $C_1$, shape functions in finite element implementation. In commercial FE softwares, $C_1$, shape functions are not so common in plate and shell analysis. Thus zigzag theories are useful for the highly accurate prediction of thick composite behaviors but they are not practical in the sense that they cannot be used conveniently in the commercial package. In practice, iso-parametric $C_0$ plate model is the standard model for the analysis and design of composite laminated plates and shells. Thus in the present study, an enhanced lower order shear deformation theory is developed. The proposed theory requires only $C_0$ shape function in FE implementation. The least-squared energy error between the lower order theory and higher order theory is minimized. An enhanced lower order shear deformation theory(ELSDT) in this paper is proposed for smart structure under complex loadings. The ELSDT is constructed by the strain energy transformation and fully coupled mechanical, electric loading cases are studied. In order to obtain accurate prediction, zigzag in-plane displacement and transverse normal deformation are considered in the deformation Held. In the electric behavior, open-circuit condition as well as closed-circuit condition is considered. Through the numerous examples, the accuracy and robustness of present theory are demonstrated.

Nonlinear FEA of higher order beam resting on a tensionless foundation with friction

  • He, Guanghui;Li, Xiaowei;Lou, Rong
    • Geomechanics and Engineering
    • /
    • v.11 no.1
    • /
    • pp.95-116
    • /
    • 2016
  • A novel higher order shear-deformable beam model, which provides linear variation of transversal normal strain and quadratic variation of shearing strain, is proposed to describe the beam resting on foundation. Then, the traditional two-parameter Pasternak foundation model is modified to capture the effects of the axial deformation of beam. The Masing's friction law is incorporated to deal with nonlinear interaction between the foundation and the beam bottom, and the nonlinear properties of the beam material are also considered. To solve the mathematical problem, a displacement-based finite element is formulated, and the reliability of the proposed model is verified. Finally, numerical examples are presented to study the effects of the interfacial friction between the beam and foundation, and the mechanical behavior due to the tensionless characteristics of the foundation is also examined. Numerical results indicate that the effects of tensionless characteristics of foundation and the interfacial friction have significant influences on the mechanical behavior of the beam-foundation system.

On buckling analysis of laminated composite plates using a nonlocal refined four-variable model

  • Shahsavari, Davood;Karami, Behrouz;Janghorban, Maziar
    • Steel and Composite Structures
    • /
    • v.32 no.2
    • /
    • pp.173-187
    • /
    • 2019
  • This study is concerned with the stability of laminated composite plates modelled using Eringen's nonlocal differential model (ENDM) and a novel refined-hyperbolic-shear-deformable plate theory. The plate is assumed to be lying on the Pasternak elastic foundation and is under the influence of an in-plane magnetic field. The governing equations and boundary conditions are obtained through Hamilton's principle. An analytical approach considering Navier series is used to fine the critical bucking load. After verifying with existing results for the reduced cases, the present model is then used to study buckling of the laminated composite plate. Numerical results demonstrate clearly for the first time the roles of size effects, magnetic field, foundation parameters, moduli ratio, geometry, lay-up numbers and sequences, fiber orientations, and boundary conditions. These results could be useful for designing better composites and can further serve as benchmarks for future studies on the laminated composite plates.

Deflection and vibration analysis of higher-order shear deformable compositionally graded porous plate

  • Ebrahimi, Farzad;Habibi, Sajjad
    • Steel and Composite Structures
    • /
    • v.20 no.1
    • /
    • pp.205-225
    • /
    • 2016
  • In this study the finite element method is utilized to predict the deflection and vibration characteristics of rectangular plates made of saturated porous functionally graded materials (PFGM) within the framework of the third order shear deformation plate theory. Material properties of PFGM plate are supposed to vary continuously along the thickness direction according to the power-law form and the porous plate is assumed of the form where pores are saturated with fluid. Various edge conditions of the plate are analyzed. The governing equations of motion are derived through energy method, using calculus of variations while the finite element model is derived based on the constitutive equation of the porous material. According to the numerical results, it is revealed that the proposed modeling and finite element approach can provide accurate deflection and frequency results of the PFGM plates as compared to the previously published results in literature. The detailed mathematical derivations are presented and numerical investigations are performed while the emphasis is placed on investigating the effect of the several parameters such as porosity volume fraction, material distribution profile, mode number and boundary conditions on the natural frequencies and deflection of the PFGM plates in detail. It is explicitly shown that the deflection and vibration behaviour of porous FGM plates are significantly influenced by these effects. Numerical results are presented to serve as benchmarks for future analyses of FGM plates with porosity phases.

Dynamic Characteristics of Composite Plates Subjected to Electromagnetic and Thermal Fields (자기장 및 열하중을 받는 복합재료 판의 동적 특성)

  • Kim, Sung-Kyun;Lee, Kune-Woo;Moon, Jei-Kwon;Choi, Jong-Woon;Kim, Young-Jun;Park, Sang-Yun;Song, Oh-Seop
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.6
    • /
    • pp.536-545
    • /
    • 2011
  • Structural model of laminated composite plates based on the first order shear deformable plate theory and subjected to a combination of magnetic and thermal fields is developed. Coupled equations of motion are derived via Hamilton's principle on the basis of electromagnetic equations (Faraday, Ampere, Ohm, and Lorentz equations) and thermal ones which are involved in constitutive equations. In order to reveal the implications of a number of geometrical and physical features of the model, free vibration of a composite plate immersed in a transversal magnetic field and subjected to a temperature gradient is considered. Special coupling effects between the magnetic-thermal-elastic fields are revealed in this paper.

Semi-numerical simulation for effects of different loadings on vibration behavior of 2D systems

  • Rao, Li;Lin, Chao;Zhang, Chenglin
    • Structural Engineering and Mechanics
    • /
    • v.81 no.3
    • /
    • pp.259-266
    • /
    • 2022
  • Based upon differential quadrature method (DQM) and nonlocal strain gradient theory (NSGT), an investigation on the free vibrations of 2D plate systems with nano-dimensions has been provided taking into account the effects of different mechanical loadings. In order to capture different mechanical loadings, a general form of variable compressive load applied in the axial direction of the plate system has been introduced. The studied plate has been constructed from two types of particles which results in graded material properties and nanoscale pores. The established formulation for the plate is in the context of a novel shear deformable model and the equations have been solved via a semi-numerical trend. Presented results indicate the prominence of material composition, nonlocal coefficient, strain gradient coefficient and boundary conditions on vibrational frequencies of nano-size plate.

Effect of thickness stretching and multi-field loading on the results of sandwich piezoelectric/piezomagnetic MEMS

  • Xiaoping Zou;Gongxing Yan;Wangming Wu;Wenjie Yang;Weiwei Shi;Yuhusun Sun
    • Steel and Composite Structures
    • /
    • v.46 no.4
    • /
    • pp.485-495
    • /
    • 2023
  • Bending static and stress investigation of a microplate of piezoelectric/piezomagnetic material subjected to combined multifield loading. Shear deformable as well as thickness stretched model is used for derivation of the kinematic relations. Multi field governing equations are derived analytically through principle of virtual work. the results are analytically obtained analytically including magnetic/electric potentials, displacement and stress components with variation in multifield loading parameters.

Critical multi-field load analysis of the piezoelectric/piezomagnetic microplates as an application in sports equipment

  • Yi Zhu
    • Advances in nano research
    • /
    • v.15 no.5
    • /
    • pp.485-493
    • /
    • 2023
  • Critical multi-field loads and free vibration responses of the sandwich piezoelectric/piezomagnetic microplate subjected to combination of magnetoelectromechanical loads based on a thickness-stretched higher order shear deformable model using Hamilton's principle. The lateral displacement is assumed summation of bending, shearing and stretching functions. The elasti core is sandwiched by a couple of piezoelectric/piezomagnetic face-sheets subjected to electromagnetocmechanical loads. The work of external force is calculated with considering the in-plane mechanical, electrical and magnetic loads based on piezomagnetoelasticity relations. The critical multi field loading and natural frequency analysis are performed to investigate influence of geometric and loading parameters on the responses. A verification is performed for justification of the numerical results.

Higher-order Shear Deformable Analysis of Laminated Plates on Two-parameter Elastic Foundations (Two-parameter 탄성지반위에 놓인 고차전단변형 적층판의 해석)

  • Han, Sung-Cheon;Jang, Suk-Yoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.1
    • /
    • pp.101-113
    • /
    • 2001
  • The main purpose of this paper is to present deflections of laminated composite plates on the two-parameter foundations. that is an elastic foundation with shear layer. This paper focuses on the deformation behaviour of anisotropic structures on elastic foundations. The third-order shear deformation theory is applied by using the double-fourier series. To validate the derived equations the obtained displacements for simply supported isotropic and orthotropic plates on elastic foundations are compared with those of Timoshenko and LUSAS program. The results show an excellent agreement for the isotropic and LUSAS program. The results show an excellent agreement for the isotropic and orthotropic plates on the elastic foundations. Numerical results for displacements are presented to show the effects of side-to-thickness ratio aspect ratio, material anisotropy and shear modulus of foundations.

  • PDF