• Title/Summary/Keyword: shape functions

Search Result 1,037, Processing Time 0.025 seconds

Buckling analysis of arbitrary point-supported plates using new hp-cloud shape functions

  • Jamshidi, Sajad;Fallah, N.
    • Structural Engineering and Mechanics
    • /
    • v.70 no.6
    • /
    • pp.711-722
    • /
    • 2019
  • Considering stress singularities at point support locations, buckling solutions for plates with arbitrary number of point supports are hard to obtain. Thus, new Hp-Cloud shape functions with Kronecker delta property (HPCK) were developed in the present paper to examine elastic buckling of point-supported thin plates in various shapes. Having the Kronecker delta property, this specific Hp-Cloud shape functions were constructed through selecting particular quantities for influence radii of nodal points as well as proposing appropriate enrichment functions. Since the given quantities for influence radii of nodal points could bring about poor quality of interpolation for plates with sharp corners, the radii were increased and the method of Lagrange multiplier was used for the purpose of applying boundary conditions. To demonstrate the capability of the new Hp-Cloud shape functions in the domain of analyzing plates in different geometry shapes, various test cases were correspondingly investigated and the obtained findings were compared with those available in the related literature. Such results concerning these new Hp-Cloud shape functions revealed a significant consistency with those reported by other researchers.

Construction of the shape functions of beam vibrations for analysis of the rectangular plates by Kantorovich-Vlasov's method

  • Olodo, Emmanuel E.T.;Degan, Gerard
    • Structural Engineering and Mechanics
    • /
    • v.52 no.3
    • /
    • pp.595-601
    • /
    • 2014
  • For analysis of the plates and membranes by numerical or analytical methods, the question of choice of the system of functions satisfying the different boundary conditions remains a major challenge to address. It is to this issue that is dedicated this work based on an approach of choice of combinations of trigonometric functions, which are shape functions of a bended beam with the boundary conditions corresponding to the plate support mode. To do this, the shape functions of beam vibrations for strength analysis of the rectangular plates by Kantorovich-Vlasov's method is considered. Using the properties of quasi-orthogonality of those functions allowed assessing to differential equation for every member of the series. Therefore it's proposed some new forms of integration of the beam functions, in order to simplify the problem.

Mesh distortion sensitivity of 8-node plane elasticity elements based on parametric, metric, parametric-metric, and metric-parametric formulations

  • Rajendran, S.;Subramanian, S.
    • Structural Engineering and Mechanics
    • /
    • v.17 no.6
    • /
    • pp.767-788
    • /
    • 2004
  • The classical 8-node isoparametric serendipity element uses parametric shape functions for both test and trial functions. Although this element performs well in general, it yields poor results under severe mesh distortions. The distortion sensitivity is caused by the lack of continuity and/or completeness of shape functions used for test and trial functions. A recent element using parametric and metric shape functions for constructing the test and trial functions exhibits distortion immunity. This paper discusses the choice of parametric or metric shape functions as the basis for test and/or trial functions, satisfaction of continuity and completeness requirements, and their connection to distortion sensitivity. Also, the performances of four types of elements, viz., parametric, metric, parametric-metric, and metric-parametric, are compared for distorted meshes, and their merits and demerits are discussed.

Discrete-Layer Model for Prediction of Free Edge Stresses in Laminated Composite Plates

  • Ahn, Jae-Seok;Woo, Kwang-Sung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.6
    • /
    • pp.615-626
    • /
    • 2010
  • The discrete-layer model is proposed to analyze the edge-effect problem of laminates under extension and flexure. Based on three-dimensional elasticity theory, the displacement fields of each layer in a laminate have been treated discretely in terms of three displacement components across the thickness. The displacement fields at bottom and top surfaces within a layer are approximated by two-dimensional shape functions. Then two surfaces are connected by one-dimensional high order shape functions. Thus the p-convergent refinement on approximated one- and two-dimensional shape functions can be implemented independently of each other. The quality of present model is mostly determined by polynomial degrees of shape functions for given displacement fields. For nodal modes with physical meaning, the linear Lagrangian polynomials are considered. Additional modes without physical meaning, which are created by increasing nodeless degrees of shape functions, are derived from integrals of Legendre polynomials which have an orthogonality property. Also, it is assumed that mapping functions are linear in the light of shape of laminated plates. The results obtained by this proposed model are compared with those available in literatures. Especially, three-dimensional out-of-plane stresses in the interior and near the free edges are evaluated and convergence performance of the present model is established with the stress results.

Proposal of Makeup's Function on the Metaverse Digital Platform - Focusing on Zepeto - (메타버스 디지털 플랫폼의 메이크업 기능 제안 - 제페토를 중심으로 -)

  • Se Mi Nam;Eun Sil Kim
    • Fashion & Textile Research Journal
    • /
    • v.25 no.6
    • /
    • pp.739-744
    • /
    • 2023
  • With the popularization of 5G networks and the development of AI (artificial intelligence) technology, Metaverse, which creates production capacity by combining virtual space and reality, is attracting attention. In this study, we searched for makeup applications with more than 100 million downloads from October 11, 2020 to November 3, 2020 through the Google Play Store. As a result of the search, four applications were found: YouCam Makeup, YouCam Perfect, Beauty Plus, and Sweet Snap. Based on the functions provided by the four applications, we attempted to suggest makeup functions applicable to Zepeto's avatar. Functions for the eyes (eyeliner, eyelashes, mascara, eye shadow, eye shape, eyebrow shape, lenses, double eyelids), functions for the nose (nose shape), functions for the mouth (lipstick, lip shape, smile function) ) Functions corresponding to the facial contour (contour, skin foundation, blusher, shading, highlighter, face painting, theme makeup) and functions corresponding to the body (body adjustment) were proposed. This study is the first in the beauty field to propose a method of applying the functions of the Metaverse platform as the importance of digital platforms is highlighted, and is the first to propose a makeup function applied to the Metaverse so that it can be used as important basic data in the future.

OBSTACLE SHAPE RECONSTRUCTION BY LOCALLY SUPPORTED BASIS FUNCTIONS

  • Lee, Ju-Hyun;Kang, Sungkwon
    • Honam Mathematical Journal
    • /
    • v.36 no.4
    • /
    • pp.831-852
    • /
    • 2014
  • The obstacle shape reconstruction problem has been known to be difficult to solve since it is highly nonlinear and severely ill-posed. The use of local or locally supported basis functions for the problem has been addressed for many years. However, to the authors' knowledge, any research report on the proper usage of local or locally supported basis functions for the shape reconstruction has not been appeared in the literature due to many difficulties. The aim of this paper is to introduce the general concepts and methodologies for the proper choice and their implementation of locally supported basis functions through the two-dimensional Helmholtz equation. The implementations are based on the complex nonlinear parameter estimation (CNPE) formula and its robust algorithm developed recently by the authors. The basic concepts and ideas are simple. The derivation of the necessary properties needed for the shape reconstructions are elementary. However, the capturing abilities for the local geometry of the obstacle are superior to those by conventional methods, the trial and errors, due to the proper implementation and the CNPE algorithm. Several numerical experiments are performed to show the power of the proposed method. The fundamental ideas and methodologies described in this paper can be applied to many other shape reconstruction problems.

Extension of Rational Interpolation Functions for FE Analysis of Rotating Beams (회전하는 보의 유한요소해석을 위한 유리형상함수의 확장)

  • Kim, Yong-Woo;Jeong, Jae-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.573-578
    • /
    • 2009
  • Starting from the rotating beam finite element in which the interpolating shape functions satisfies the governing static homogeneous differential equation of Euler-Bernoulli rotating beams, we derived new shape functions that satisfies the governing differential equation which contains the terms of hub radius and setting angle. The shape functions are rational functions which depend on hub radius, setting angle, rotational speed and element position. Numerical results for uniform and tapered cantilever beams with and without hub radius and setting angle are compared with the available results. It is shown that the present element offers an accurate method for solving the free vibration problems of rotating beam.

  • PDF

Extension of Rational Interpolation Functions for FE Analysis of Rotating Beams (회전하는 보의 유한요소해석을 위한 유리형상함수의 확장)

  • Kim, Yong-Woo;Jeong, Jae-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.6
    • /
    • pp.591-598
    • /
    • 2009
  • Starting from the rotating beam finite element in which the interpolating shape functions satisfy the governing static homogeneous differential equation of Euler-Bernoulli rotating beams, we derived new shape functions that satisfy the governing differential equation which contains the terms of hub radius and setting angle. The shape functions are rational functions which depend on hub radius, setting angle, rotational speed and element position. Numerical results for uniform and tapered cantilever beams with and without hub radius and setting angle are compared with the available results. It is shown that the present element offers an accurate method for solving the free vibration problems of rotating beams.

The fiber element technique for analysis of concrete-filled steel tubes under cyclic loads

  • Golafshani, A.A.;Aval, S.B.B.;Saadeghvaziri, M.A.
    • Structural Engineering and Mechanics
    • /
    • v.14 no.2
    • /
    • pp.119-133
    • /
    • 2002
  • A beam-column fiber element for the large displacement, nonlinear inelastic analysis of Concrete-Filled Steel Tubes (CFT) is implemented. The method of description is Total Lagrangian formulation. An 8 degree of freedom (DOF) element with three nodes, which has 3 DOF per end node and 2 DOF on the middle node, has been chosen. The quadratic Lagrangian shape functions for axial deformation and the quartic Hermitian shape function for the transverse deformation are used. It is assumed that the perfect bond is maintained between steel shell and concrete core. The constitutive models employed for concrete and steel are based on the results of a recent study and include the confinement and biaxial effects. The model is implemented to analyze several CFT columns under constant and non-proportional fluctuating concentric axial load and cyclic lateral load. Good agreement has been found between experimental results and theoretical analysis.

Shape Design Sensitivity Analysis using Isogeometric Approach (CAD 형상을 활용한 설계 민감도 해석)

  • Ha, Seung-Hyun;Cho, Seon-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.577-582
    • /
    • 2007
  • A variational formulation for plane elasticity problems is derived based on an isogeometric approach. The isogeometric analysis is an emerging methodology such that the basis functions in analysis domain arc generated directly from NURBS (Non-Uniform Rational B-Splines) geometry. Thus. the solution space can be represented in terms of the same functions to represent the geometry. The coefficients of basis functions or the control variables play the role of degrees-of-freedom. Furthermore, due to h-. p-, and k-refinement schemes, the high order geometric features can be described exactly and easily without tedious re-meshing process. The isogeometric sensitivity analysis method enables us to analyze arbitrarily shaped structures without re-meshing. Also, it provides a precise construction method of finite element model to exactly represent geometry using B-spline base functions in CAD geometric modeling. To obtain precise shape sensitivity, the normal and curvature of boundary should be taken into account in the shape sensitivity expressions. However, in conventional finite element methods, the normal information is inaccurate and the curvature is generally missing due to the use of linear interpolation functions. A continuum-based adjoint sensitivity analysis method using the isogeometric approach is derived for the plane elasticity problems. The conventional shape optimization using the finite element method has some difficulties in the parameterization of boundary. In isogeometric analysis, however, the geometric properties arc already embedded in the B-spline shape functions and control points. The perturbation of control points in isogeometric analysis automatically results in shape changes. Using the conventional finite clement method, the inter-element continuity of the design space is not guaranteed so that the normal vector and curvature arc not accurate enough. On tile other hand, in isogeometric analysis, these values arc continuous over the whole design space so that accurate shape sensitivity can be obtained. Through numerical examples, the developed isogeometric sensitivity analysis method is verified to show excellent agreement with finite difference sensitivity.

  • PDF