DOI QR코드

DOI QR Code

Mesh distortion sensitivity of 8-node plane elasticity elements based on parametric, metric, parametric-metric, and metric-parametric formulations

  • Rajendran, S. (School of Mechanical and Production Engineering, Nanyang Technological University) ;
  • Subramanian, S. (Microwave Tube Research and Development Centre)
  • Received : 2003.07.16
  • Accepted : 2003.12.02
  • Published : 2004.06.25

Abstract

The classical 8-node isoparametric serendipity element uses parametric shape functions for both test and trial functions. Although this element performs well in general, it yields poor results under severe mesh distortions. The distortion sensitivity is caused by the lack of continuity and/or completeness of shape functions used for test and trial functions. A recent element using parametric and metric shape functions for constructing the test and trial functions exhibits distortion immunity. This paper discusses the choice of parametric or metric shape functions as the basis for test and/or trial functions, satisfaction of continuity and completeness requirements, and their connection to distortion sensitivity. Also, the performances of four types of elements, viz., parametric, metric, parametric-metric, and metric-parametric, are compared for distorted meshes, and their merits and demerits are discussed.

Keywords

References

  1. Arnold, D.N., Boffi, D. and Falk, R.S. (2002), "Approximation by quadrilateral finite elements", Mathematics of Computation, 71, 909-922. https://doi.org/10.1090/S0025-5718-02-01439-4
  2. Backlund, J. (1978), "On isoparametric elements", Int. J. Num. Meth. Eng., 12, 731-732. https://doi.org/10.1002/nme.1620120418
  3. Gifford, L.N. (1979), "More on distorted isoparametric elements", Int. J. Num. Meth. Eng., 14, 290-291. https://doi.org/10.1002/nme.1620140212
  4. Kikuchi, F., Okabe, M. and Fujio, H. (1999), "Modification of the 8-node serendipity element", Comp. Meth. Appl. Mech. Eng., 179, 91-109. https://doi.org/10.1016/S0045-7825(99)00031-6
  5. Kohnke, P.C. (ed.), ANSYS (1997) Theory Reference Release 5.4, ANSYS, Inc., Canonsburg, PA.
  6. Lee, N.S. and Bathe, K.J. (1993), "Effects of element distortions on the performance of isoparametric elements", Int. J. Num. Meth. Eng., 36, 3553-3576. https://doi.org/10.1002/nme.1620362009
  7. MacNeal, R.H. and Harder, R.L. (1992), "Eight nodes or nine?", Int. J. Num. Meth. Eng., 33, 1049-1058. https://doi.org/10.1002/nme.1620330510
  8. MacNeal, R.H. (1994), Finite Elements: Their Design and Performance, Marcel Dekker: New York.
  9. Rajendran, S. and Liew, K.M. (2000), "Completeness requirements of shape functions for higher order finite elements", Struct. Eng. Mech., An Int. J., 10(2), 93-110. https://doi.org/10.12989/sem.2000.10.2.093
  10. Rajendran, S. and Liew, K.M. (2003), "A novel unsymmetric 8-node plane element immune to mesh distortion under a quadratic displacement field", Int. J. Num. Meth. Eng., 58, 1718-1748.
  11. Stricklin, J.A., Ho, W.S., Richardson, E.Q. and Haisler, W.E. (1977), "On isoparametric vs. linear strain triangular elements", Int. J. Num. Meth. Eng., 11, 1041-1043. https://doi.org/10.1002/nme.1620110610
  12. Timoshenko, S.P. and Goodier, J.N. (1934), Theory of Elasticity, 3rd Edn. McGraw-Hill Book Company: New York.
  13. Zienkiewicz, O.C. and Taylor, R.L. (1989), The Finite Element Method Vol. 1: Basic Formulation and Linear Problems, 4th Edn., McGraw-Hill Book Company, London.

Cited by

  1. Extension of unsymmetric finite elements US‐QUAD8 and US‐HEXA20 for geometric nonlinear analyses vol.24, pp.4, 2007, https://doi.org/10.1108/02644400710748715
  2. Mesh distortion, locking and the use of metric trial functions for displacement type finite elements vol.29, pp.3, 2008, https://doi.org/10.12989/sem.2008.29.3.289
  3. A partition of unity-based ‘FE–Meshfree’ QUAD4 element for geometric non-linear analysis 2009, https://doi.org/10.1002/nme.2820
  4. The unsymmetric finite element formulation and variational incorrectness vol.28, pp.6, 2008, https://doi.org/10.12989/sem.2008.28.6.767
  5. Stay Cartesian, or go natural? vol.196, pp.9-12, 2007, https://doi.org/10.1016/j.cma.2006.09.018
  6. Remedies to rotational frame dependence and interpolation failure of US-QUAD8 element vol.24, pp.11, 2008, https://doi.org/10.1002/cnm.1026
  7. Use of unsymmetric finite element method in impact analysis of composite laminates vol.47, pp.4, 2011, https://doi.org/10.1016/j.finel.2010.12.016
  8. A concave-admissible quadrilateral quasi-conforming plane element using B-net method vol.57, 2016, https://doi.org/10.1016/j.euromechsol.2015.12.001
  9. A quadratic plane triangular element immune to quadratic mesh distortions under quadratic displacement fields vol.195, pp.9-12, 2006, https://doi.org/10.1016/j.cma.2005.04.012
  10. Mesh distortion immunity of finite elements and the best-fit paradigm vol.31, pp.5, 2006, https://doi.org/10.1007/BF02715909
  11. A technique to develop mesh-distortion immune finite elements vol.199, pp.17-20, 2010, https://doi.org/10.1016/j.cma.2009.11.017
  12. The unsymmetric finite element formulation and variational incorrectness vol.26, pp.1, 2007, https://doi.org/10.12989/sem.2007.26.1.031
  13. An improved parametric formulation for the variationally correct distortion immune three-noded bar element vol.38, pp.3, 2004, https://doi.org/10.12989/sem.2011.38.3.261
  14. Two Triangular Membrane Elements Based on Strain vol.11, pp.1, 2004, https://doi.org/10.1142/s1758825119500108
  15. Function space formulation of the 3-noded distorted Timoshenko metric beam element vol.69, pp.6, 2004, https://doi.org/10.12989/sem.2019.69.6.615
  16. Using Higher-Order Strain Interpolation Function to Improve the Accuracy of Structural Responses vol.12, pp.3, 2004, https://doi.org/10.1142/s175882512050026x