References
- Arnold, D.N., Boffi, D. and Falk, R.S. (2002), "Approximation by quadrilateral finite elements", Mathematics of Computation, 71, 909-922. https://doi.org/10.1090/S0025-5718-02-01439-4
- Backlund, J. (1978), "On isoparametric elements", Int. J. Num. Meth. Eng., 12, 731-732. https://doi.org/10.1002/nme.1620120418
- Gifford, L.N. (1979), "More on distorted isoparametric elements", Int. J. Num. Meth. Eng., 14, 290-291. https://doi.org/10.1002/nme.1620140212
- Kikuchi, F., Okabe, M. and Fujio, H. (1999), "Modification of the 8-node serendipity element", Comp. Meth. Appl. Mech. Eng., 179, 91-109. https://doi.org/10.1016/S0045-7825(99)00031-6
- Kohnke, P.C. (ed.), ANSYS (1997) Theory Reference Release 5.4, ANSYS, Inc., Canonsburg, PA.
- Lee, N.S. and Bathe, K.J. (1993), "Effects of element distortions on the performance of isoparametric elements", Int. J. Num. Meth. Eng., 36, 3553-3576. https://doi.org/10.1002/nme.1620362009
- MacNeal, R.H. and Harder, R.L. (1992), "Eight nodes or nine?", Int. J. Num. Meth. Eng., 33, 1049-1058. https://doi.org/10.1002/nme.1620330510
- MacNeal, R.H. (1994), Finite Elements: Their Design and Performance, Marcel Dekker: New York.
- Rajendran, S. and Liew, K.M. (2000), "Completeness requirements of shape functions for higher order finite elements", Struct. Eng. Mech., An Int. J., 10(2), 93-110. https://doi.org/10.12989/sem.2000.10.2.093
- Rajendran, S. and Liew, K.M. (2003), "A novel unsymmetric 8-node plane element immune to mesh distortion under a quadratic displacement field", Int. J. Num. Meth. Eng., 58, 1718-1748.
- Stricklin, J.A., Ho, W.S., Richardson, E.Q. and Haisler, W.E. (1977), "On isoparametric vs. linear strain triangular elements", Int. J. Num. Meth. Eng., 11, 1041-1043. https://doi.org/10.1002/nme.1620110610
- Timoshenko, S.P. and Goodier, J.N. (1934), Theory of Elasticity, 3rd Edn. McGraw-Hill Book Company: New York.
- Zienkiewicz, O.C. and Taylor, R.L. (1989), The Finite Element Method Vol. 1: Basic Formulation and Linear Problems, 4th Edn., McGraw-Hill Book Company, London.
Cited by
- Extension of unsymmetric finite elements US‐QUAD8 and US‐HEXA20 for geometric nonlinear analyses vol.24, pp.4, 2007, https://doi.org/10.1108/02644400710748715
- Mesh distortion, locking and the use of metric trial functions for displacement type finite elements vol.29, pp.3, 2008, https://doi.org/10.12989/sem.2008.29.3.289
- A partition of unity-based âFEâMeshfreeâ QUAD4 element for geometric non-linear analysis 2009, https://doi.org/10.1002/nme.2820
- The unsymmetric finite element formulation and variational incorrectness vol.28, pp.6, 2008, https://doi.org/10.12989/sem.2008.28.6.767
- Stay Cartesian, or go natural? vol.196, pp.9-12, 2007, https://doi.org/10.1016/j.cma.2006.09.018
- Remedies to rotational frame dependence and interpolation failure of US-QUAD8 element vol.24, pp.11, 2008, https://doi.org/10.1002/cnm.1026
- Use of unsymmetric finite element method in impact analysis of composite laminates vol.47, pp.4, 2011, https://doi.org/10.1016/j.finel.2010.12.016
- A concave-admissible quadrilateral quasi-conforming plane element using B-net method vol.57, 2016, https://doi.org/10.1016/j.euromechsol.2015.12.001
- A quadratic plane triangular element immune to quadratic mesh distortions under quadratic displacement fields vol.195, pp.9-12, 2006, https://doi.org/10.1016/j.cma.2005.04.012
- Mesh distortion immunity of finite elements and the best-fit paradigm vol.31, pp.5, 2006, https://doi.org/10.1007/BF02715909
- A technique to develop mesh-distortion immune finite elements vol.199, pp.17-20, 2010, https://doi.org/10.1016/j.cma.2009.11.017
- The unsymmetric finite element formulation and variational incorrectness vol.26, pp.1, 2007, https://doi.org/10.12989/sem.2007.26.1.031
- An improved parametric formulation for the variationally correct distortion immune three-noded bar element vol.38, pp.3, 2004, https://doi.org/10.12989/sem.2011.38.3.261
- Two Triangular Membrane Elements Based on Strain vol.11, pp.1, 2004, https://doi.org/10.1142/s1758825119500108
- Function space formulation of the 3-noded distorted Timoshenko metric beam element vol.69, pp.6, 2004, https://doi.org/10.12989/sem.2019.69.6.615
- Using Higher-Order Strain Interpolation Function to Improve the Accuracy of Structural Responses vol.12, pp.3, 2004, https://doi.org/10.1142/s175882512050026x