• Title/Summary/Keyword: set-based algorithm

Search Result 2,222, Processing Time 0.029 seconds

Optimization of Multi-Atlas Segmentation with Joint Label Fusion Algorithm for Automatic Segmentation in Prostate MR Imaging

  • Choi, Yoon Ho;Kim, Jae-Hun;Kim, Chan Kyo
    • Investigative Magnetic Resonance Imaging
    • /
    • v.24 no.3
    • /
    • pp.123-131
    • /
    • 2020
  • Purpose: Joint label fusion (JLF) is a popular multi-atlas-based segmentation algorithm, which compensates for dependent errors that may exist between atlases. However, in order to get good segmentation results, it is very important to set the several free parameters of the algorithm to optimal values. In this study, we first investigate the feasibility of a JLF algorithm for prostate segmentation in MR images, and then suggest the optimal set of parameters for the automatic prostate segmentation by validating the results of each parameter combination. Materials and Methods: We acquired T2-weighted prostate MR images from 20 normal heathy volunteers and did a series of cross validations for every set of parameters of JLF. In each case, the atlases were rigidly registered for the target image. Then, we calculated their voting weights for label fusion from each combination of JLF's parameters (rpxy, rpz, rsxy, rsz, β). We evaluated the segmentation performances by five validation metrics of the Prostate MR Image Segmentation challenge. Results: As the number of voxels participating in the voting weight calculation and the number of referenced atlases is increased, the overall segmentation performance is gradually improved. The JLF algorithm showed the best results for dice similarity coefficient, 0.8495 ± 0.0392; relative volume difference, 15.2353 ± 17.2350; absolute relative volume difference, 18.8710 ± 13.1546; 95% Hausdorff distance, 7.2366 ± 1.8502; and average boundary distance, 2.2107 ± 0.4972; in parameters of rpxy = 10, rpz = 1, rsxy = 3, rsz = 1, and β = 3. Conclusion: The evaluated results showed the feasibility of the JLF algorithm for automatic segmentation of prostate MRI. This empirical analysis of segmentation results by label fusion allows for the appropriate setting of parameters.

An Improved Level Set Method to Image Segmentation Based on Saliency

  • Wang, Yan;Xu, Xianfa
    • Journal of Information Processing Systems
    • /
    • v.15 no.1
    • /
    • pp.7-21
    • /
    • 2019
  • In order to improve the edge segmentation effect of the level set image segmentation and avoid the influence of the initial contour on the level set method, a saliency level set image segmentation model based on local Renyi entropy is proposed. Firstly, the saliency map of the original image is extracted by using saliency detection algorithm. And the outline of the saliency map can be used to initialize the level set. Secondly, the local energy and edge energy of the image are obtained by using local Renyi entropy and Canny operator respectively. At the same time, new adaptive weight coefficient and boundary indication function are constructed. Finally, the local binary fitting energy model (LBF) as an external energy term is introduced. In this paper, the contrast experiments are implemented in different image database. The robustness of the proposed model for segmentation of images with intensity inhomogeneity and complicated edges is verified.

A Tolerant Rough Set Approach for Handwritten Numeral Character Classification

  • Kim, Daijin;Kim, Chul-Hyun
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.288-295
    • /
    • 1998
  • This paper proposes a new data classification method based on the tolerant rough set that extends the existing equivalent rough set. Similarity measure between two data is described by a distance function of all constituent attributes and they are defined to be tolerant when their similarity measure exceeds a similarity threshold value. The determination of optimal similarity theshold value is very important for the accurate classification. So, we determine it optimally by using the genetic algorithm (GA), where the goal of evolution is to balance two requirements such that (1) some tolerant objects are required to be included in the same class as many as possible. After finding the optimal similarity threshold value, a tolerant set of each object is obtained and the data set is grounded into the lower and upper approximation set depending on the coincidence of their classes. We propose a two-stage classification method that all data are classified by using the lower approxi ation at the first stage and then the non-classified data at the first stage are classified again by using the rough membership functions obtained from the upper approximation set. We apply the proposed classification method to the handwritten numeral character classification. problem and compare its classification performance and learning time with those of the feed forward neural network's back propagation algorithm.

  • PDF

Multi-Description Image Compression Coding Algorithm Based on Depth Learning

  • Yong Zhang;Guoteng Hui;Lei Zhang
    • Journal of Information Processing Systems
    • /
    • v.19 no.2
    • /
    • pp.232-239
    • /
    • 2023
  • Aiming at the poor compression quality of traditional image compression coding (ICC) algorithm, a multi-description ICC algorithm based on depth learning is put forward in this study. In this study, first an image compression algorithm was designed based on multi-description coding theory. Image compression samples were collected, and the measurement matrix was calculated. Then, it processed the multi-description ICC sample set by using the convolutional self-coding neural system in depth learning. Compressing the wavelet coefficients after coding and synthesizing the multi-description image band sparse matrix obtained the multi-description ICC sequence. Averaging the multi-description image coding data in accordance with the effective single point's position could finally realize the compression coding of multi-description images. According to experimental results, the designed algorithm consumes less time for image compression, and exhibits better image compression quality and better image reconstruction effect.

Development of Multi-agent Based Deadlock-Free AGV Simulator for Material Handling System (자재 취급 시스템을 위한 다중 에이전트 기반의 교착상태에 자유로운 AGV 시뮬레이터 개발)

  • Lee, Jae-Yong;Seo, Yoon-Ho
    • Journal of the Korea Society for Simulation
    • /
    • v.17 no.2
    • /
    • pp.91-103
    • /
    • 2008
  • In order to simulate the behavior of automated manufacturing systems, the performance of material handling systems should be measured dynamically. Multi-Agent technology could be well adapted for the development of simulator for distributed and intelligent manufacture systems. A multi-agent system is composed of one coordination agent and multiple application agents. Issues in AGVS simulator can be classified by the set-up and operating problems. Decisions on the number of vehicles, bi- or uni-directional guide-path, etc. are fallen into the set-up problem category, while deadlock tree algorithm and conflict resolution are in operating problem. In this paper, a multi-agent based deadlock-free simulator for automated guided vehicle system(AGVS) are proposed through the use of multi-agent technologies and the development of deadlock-free algorithm. In this AGVS simulator proposed, well-known Floyd algorithm is used to create AGVS Guide path, through which AGVS move. Also, AGVs avoid vehicle conflict and deadlock using check path algorithm. And Moving vehicle agents are operated in real-time control by coordination agent. AGV position is dynamically calculated based on the concept of rolling time horizon. Simulator receives and presents operating information of vehicle in AGVS Gaunt chart. The performance of the proposed algorithm and developed simulator based on multi-agent are validated through set of experiments.

  • PDF

Optimization of Transient Stability Control Part-I: For Cases with Identical Unstable Modes

  • Xue Yusheng;Li Wei;Hill David John
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.spc2
    • /
    • pp.334-340
    • /
    • 2005
  • Based on the stability margin provided by the EEAC, the unstable contingencies can be classified into sets according to their unstable modes. This two-part paper develops a globally optimal algorithm for transient stability control to coordinate preventive actions and emergency actions. In the first part, an algorithm is proposed for a set of contingencies having identical unstable modes. Instead of iterations between discrete emergency actions and continuous preventive actions, the algorithm straightforwardly searches for a globally optimal solution. The procedure includes assessing a set of insufficient emergency schemes identified by the EEAC; calculating the related preventive actions needed for stabilizing the system; and selecting the scheme with the minimum overall costs. Simulations on a Chinese power system highlight its excellent performance. The positive results obtained are explained by analogizing settlements for 0-1 knapsack problems using the multi-points greedy algorithm.

A Best-First Branch and Bound Algorithm for Unweighted Unconstrained Two-Dimensional Cutting Problems (비가중 무제한 2차원 절단문제에 대한 최적-우선 분지한계 해법)

  • Yoon, Ki-Seop;Yoon, Hee-Kwon;Kang, Maing-Kyu
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.32 no.1
    • /
    • pp.79-84
    • /
    • 2009
  • In this paper, a best-first branch and bound algorithm based upon the bottom-up approach for the unweighted unconstrained two-dimensional cutting problem is proposed to find the optimal solution to the problem. The algorithm uses simple and effective methods to prevent constructing duplicated patterns and reduces the searching space by dividing the branched node set. It also uses a efficient bounding strategy to fathom the set of patterns. Computational results are compared with veil-known exact algorithms and demonstrate the efficiency of the proposed algorithm.

A Daily Scheduling of Generator Maintenance using Fuzzy Set Theory combined with Genetic Algorithm (퍼지 집합이론과 유전알고리즘을 이용한 일간 발전기 보수유지계획의 수립)

  • Oh, Tae-Gon;Choi, Jae-Seok;Baek, Ung-Ki
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.7
    • /
    • pp.1314-1323
    • /
    • 2011
  • The maintenance of generating units is implicitly related with power system reliability and has a tremendous bearing on the operation of the power system. A technique using a fuzzy search method which is based on fuzzy multi-criteria function has been proposed for GMS (generator maintenance scheduling) in order to consider multi-objective function. In this study, a new technique using combined fuzzy set theory and genetic algorithm(GA) is proposed for generator maintenance scheduling. The genetic algorithm(GA) is expected to make up for that fuzzy search method might search the local solution. The effectiveness of the proposed approach is demonstrated by the simulation results on a practical size test systems.

A Study on Jaundice Computer-aided Diagnosis Algorithm using Scleral Color based Machine Learning

  • Jeong, Jin-Gyo;Lee, Myung-Suk
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.12
    • /
    • pp.131-136
    • /
    • 2018
  • This paper proposes a computer-aided diagnostic algorithm in a non-invasive way. Currently, clinical diagnosis of jaundice is performed through blood sampling. Unlike the old methods, the non-invasive method will enable parents to measure newborns' jaundice by only using their mobile phones. The proposed algorithm enables high accuracy and quick diagnosis through machine learning. In here, we used the SVM model of machine learning that learned the feature extracted through image preprocessing and we used the international jaundice research data as the test data set. As a result of applying our developed algorithm, it took about 5 seconds to diagnose jaundice and it showed a 93.4% prediction accuracy. The software is real-time diagnosed and it minimizes the infant's pain by non-invasive method and parents can easily and temporarily diagnose newborns' jaundice. In the future, we aim to use the jaundice photograph of the newborn babies' data as our test data set for more accurate results.

A TDOA Sign-Based Algorithm for Fast Sound Source Localization using an L-Shaped Microphone Array

  • Yiwere, Mariam;Rhee, Eun Joo
    • Journal of Information Technology Applications and Management
    • /
    • v.23 no.3
    • /
    • pp.87-97
    • /
    • 2016
  • This paper proposes a fast sound source localization method using a TDOA sign-based algorithm. We present an L-shaped microphone set-up which creates four major regions in the range of $0^{\circ}{\sim}360^{\circ}$ by the intersection of the positive and negative regions of the individual microphone pairs. Then, we make an initial source region prediction based on the signs of two TDOA estimates before computing the azimuth value. Also, we apply a threshold and angle comparison to tackle the existing front-back confusion problem. Our experimental results show that the proposed method is comparable in accuracy to previous three microphone array methods; however, it takes a shorter computation time because we compute only two TDOA values.