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Abstract— This paper ! proposes a

new data classification method based on
the tolerant rough set that extends the
existing equivalent rough set. Similar-
ity measure between two data is de-
scribed by a distance function of all
constituent attributes and they are de-
fired to be tolerant when their similar-
ity measure exceeds a similarity thresh-
old value. The determination of optimal
similarity threshold value is very impor-
tant for the accurate classification. So,
we determine it optimally by using the
genetic algor ithm (GA), where the goal
of evolution is to balance two require-
ments such that (1) some tolerant ob-
jects are required to be included in the
same class as many as possible and (2)
some objects In the same class are re-
quired to be tolerable as much as pos-
sible. After finding the optimal simi-
larity threshold value, a tolerant set of
each object is obtained and the data
set is grouped into the lower and up-
per approximation set depending on the
coincidence of their classes. We pro-
pose a two-stage classification method
that all data are classified by using the
lower approximation at the first stage
and then the non-classified data at the
first stage are classified again by us-
ing the rough membership functions ob-
tained from the upper approximation
set. We apply the proposed classifi-
cation method to the handwritten nu-
meral character classification problem
and compare its classification perfor-
mance and learning time with those of
the feedforward neural network’s back-
propagation algorithm.

1 Introduction

Pattern classification is a problem that parti-
tions a data space 1" into classes and then
assigns a point £ € R™ to one of those classes.
Many application examples have been found
in engineering applications such as the OCR
recognition, fingerprint and facial recognition,
in industrial applications such as part clas-
sification in computer vision, and in medi-
cal applications such as the blood and elec-
tocardiogram analysis, and so on. Pattern
classification methods are classified into three
different ways : statistical pattern classifica-
tion, syntactic pattern classification, and neu-
ral network-based pattern recognition.

Recent researches of pattern classification
are based on the neural-networks as follows.

! This work was supported by a grant of IITA of
Republic of Korea(1997}.

Carpenter and Grossberg [1] developed a fast
and reliable analog pattern clustering system
called fuzzy ART (Adaptive Resonance The-
ory) that combined fuzzy logic with the ARTI.
Lin and Lee [2] introduced a general neural-
network model for fuzzy logic control and deci-
sion systems that could train fuzzy logic rules
and optimal input/output membership func-
tions. P. Simpson [3] developed a fuzzy min-
max classtfication neural network that utilized
fuzzy sets as pattern classes, where learning in
the neural network was performed by properly
placing and adjusting hyperboxes in the pat-
tern space. Since the above classifiers have
a connectionist structure that combines fuzzy
logic and neural network, they are destined
to have the same drawbacks as neural net-
works such that (1) the possibility of having
the nonconvergent solution due to the wrong
choice of initial weights, (2) relatively long
learning time, and (3) the possibility of having
the unoptimal solution due to the local min-
ima problem. To meet the above requirements
for an ideal classifier as much as possible and
overcome some drawbacks of the above neuro-
fuzzy classifiers, we propose a new classifica-
tion method based on vhe tolerant rough set.

This paper is organized as follows. Section
Il explains a theoretical background of rough
set theory, a tolerant rough set appropriate for
pattern classification, and a similarity measure
used for pattern classification. Section 1II de-
scribes how to determine the similarity thresh-
old value optimally by using the (GA. Section
IV presents a plopomd two-stage classification
method based on the lower and upper approx-
imation set. Section V presents the simulation
results of applying the proposed classification
method to the handwritten numeral character
recognition problem and compares its classi-
fication performance and learning speed with
those of the multilayer feedforward neural net-
works. Finally, a conclusion is drawn.

2 Tolerant Rough Set

Rough set theory introduced by Z. Pawlak in
the early 1980s [4], is a new mathematical tool
to deal with vagueness and uncertainty in the
areas of machine learning, knowledge acqui-
sition, decision analysis, knowledge discovery
from databases, expert systems, decision sup-
port systerns, inductive reasoning, and pattern
recognition. The rough set is based on the
indiscernibility relation that satisfies reflexiv-
ity, symmetry, and transitivity. However, in
the problem of data classification, it is incon-
venient to describe the similarity among data
with the indiscerniblity relation because two
data x and z can not be guaranteed in the
same class even though a couple of data x and
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y are contained in the same class and another
couple of data y and - are also contained in
the same class. In other word, the transitivity
property is not always useful in the problem
of classification. This nontransitity property
is more salient for the data within the bound-
ary reglon. So, we introduce a tolerant relaton
that is appropriate for the data classification
problem because it satisfies only the reflexive
and symmetric property [5].

Let A = (U, AU d) be a decision table [6].
Here, U/ is a set of elements (objects, exam-
ples), A is a set of condition attributes, where
each attribute a € A has a set of attribute val-
ues V,, and the set {d} is a decision set such
asd = {L,2,- (d)}, where r(d) be a num-
ber of dpubxon Classes Let Ra = {Ra : Ra C
V. xVy A a € A} be aset of tolerant. relations.
'Ihen each such tolerance relation satisfies

re flexive Vv, € V,, vy Rauy

v1 Rqvg — v Ry, (1)
where v; and vy are some attribute values
in V,. We say that two objects z and y
are similar to with respect to the attribute a
when the attribute values a(z) and a(y) sat-
isfy a(z)Rqa(y). Further, we say that two ob-
jects z and y are similar with respect to all
attributes A, when they satisfy the tolerance
relation with respective to all attributes, 1.e.
Ya € A, a(z)Rza(y). Hereafter, we denote the
above similarity between two objects z and y
with respective to all attributes A asx 74 yin
order to emphasize the tolerance relation.

symmetric

A tolerance set T'S(z) of an object z is de-
fined by a set of all objects that has the tol-
erance relation with the object x with respect
to all at‘Lributes as

(2)

TS(z) ={y €U |zray}.
Then we can deﬁne the lower approximation
r4(Y") and the upper approximation 74 (Y} of
a set Y C U that have the tolerance relation
with respect to all attributes A as

) = [ J{TS@)ITS(z) €V}
rzeU

Y) = | JUTS@)ITS@)nY # ¢)(3)
el

The meaning of two approximations in the tol-
erant relation is similar to that in the indis-
cernibility relation.

To construct a tolerance relation among the
data, we need to define a similarity measure
that quanities the closeness between attribute
values of objects. Let the similarity measure
with respective to the attribute a betwen two
objects r and y be S,(z,y). Then, two ob-
jects are similar with respect to the attribute
a when S,(z,y) > t(a), where t(a) is a simi-
larity threshold value of the attribute a whose
value is in the interval of i(a) € [0,1]. So,
we can relate the tolerance relation with the
similarity measure as

(4)

a{z)Raa(y) <= Salz,y) > t(a).

In the pattern classification problem, the
commonly used similarity measure is based on

a normalized distance function as
Saey =1 - Ao
maxr
where d,,q; 1s the maximum value of distance
between two attribute values a(z) and a(y).
The choice of distance function depends on the
type of application. In this work, we select the
absolute difference between attribute values as
d{a(z), a(y)) = la(z) — a(y)| due to its compu-
tational simplicity.

Next, we can extend the similarity measure
Sa(z,y) between two objects z and y with re-
spect to all attributes by an arithmetic average
of similarity measures of all attributes as

> Salzy).
Va€ A
where |A| is the number of attributes in A. In
the case of considering all attributes A at the

same time, we can relate the tolerance relation
with the similarity measure as

T Ta Yy Salz,y) > t{A4), (7)
where t(A) € [0,1] is a similarity threshold
for pattern classification based on the all at-
tributes A. One of the most important tasks in
the pattern classification using the similarity
measure defined above is the optimal deter-
mination of the similarity threshold ¢(A), be-
cause its proper determination affects the clas-
sification performance greatly. In this work,
we apply the GA to solve this optimization
problem.

Salz,y) |A| (6)

3 Determination of Similarity
Thresholds

GAs [7] are any population-based iterative
adaptive algorithms that use selection, recom-
bination, and mutation operations based on
natural selection and biological genetics. GAs
have been proven to be powerful methods in
search, optimization and machine learning [8].
They encode a potential solution to a specific
problem on a simple chromosome-like data
structure and apply recombination operators
to these structures to achieve optimization.

3.1 Chromosome Representation

When we are applying the GA to determine
the optimal similarity threshold values, the in-
puts into the GA are the information table
A = (U,AUd) and the similarity measure
Sa : Vo x Vi = [0,1], and the output from
the GA is a set of optimal similarity threshold
values {t(A) U {t(a) : a € A}}. So, when an
object is represented by n attributes, the chro-
mosome for the GA consists of n + 1 consecu-
tive real numbers of the similarity thresholds
{#(a1),t(az), -, t(an),t{A)}, where t{a;), (i =
1,2,---,n) lepleaents the similarity threshold
for the ith attribute, and the last value 7(4)
represents the similarity threshold that defines
the tolerance relation when all attributes A are
considered together. We adopt a real number
representation of chromosomes since each gene
value in the chromosome is a real number.
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3.2 Initial Population Generation

The initial gene values in the chromosome are
obtained by generating n + 1 real-valued ran-
dom numbers in the interval of [0.5,1.0]. The
reason for choosing the interval [0.5,1.0] as
the initial similarity threshold values is that
two objects are believed similar when the sim-
ilarity threshold value between two objects is
greater than at least 0.5. We complete initial
population by repeating the above operation
| P| times, where |P| is the population size.

3.3 Fitness Function

Before considering the fitness function for the
optimal determination of the similarity thresh-
olds, we consider a notion of connections to
express the indiscernibility of objects. The no-
tion of connections is based on a very simple
observation that if ¢ € TS(y) A y € TS(z),
then we can say that there 1s a connection be-
tween two objects r and y. From this, we
define two kinds of connections between two
objects x and y as

Good conn. < z € TS(y) Ad(z) = d(y),
Bad conn. & =z € TS(y) Ad(z) # d(yf8)

where d(z) and d(y) are the class decisions of
two objects z and y, respectively. When two
objects are tolerant and contained in the same
(or different) class, they have good (or bad)
connection. Fig. 1 illustrates two kinds of
connections between objects.

..... Bad connaction

Good connection

Figure 1: Good connections and bad connec-
tions.

When we choose the fitness function for the
optimal determination of the similarity thresh-
olds, we consider the following two require-
ments. First, it is required that some objects
that are tolerant each other are included in the
same class as many as possible. To meet this
requirement, we define a quality of approxi-
mation of classification v,, (4) that expresses
the ratio of all 74 — correctly classified objects
to all objects. Let a set of objects contained
in the same class be ¥; = {& € Uld(z) =
d; 1 =1,2,---r(d)}, where r(d) is the num-
ber of decision classes. Consider the tolerance
set TS(z) of an object x whose all elements
in T'S(z) is contained in the same class d;,
ie. {TS(z)|3t TS(z) C Yi}. Then, the union

of such tolerant set with respect to all object
U is called a 74 - positive region of partition
{Y;,;i=1,2-..,r(d)}, which is defined as

POS,, (ay = |J {TS(2)[3i TS(z) € Vi) (9)
reU

Then, the quality of approximation of classi-

fication 7;, (4 is defined by the ratio of all

T4 — correctly classified objects to all objects

as

card(POS;, 14))
card(U)

As the similarity threshold values increases,
the quality of approximation of classification
Yra,{d} Increases because the size of tolerant
sets decreases with the increase of the value
of similarity thresholds, and thus the chance
of inclusion of tolerance sets into the partition
set {Y;} becomes larger.

Yra {d} = (10)

When we consider only the quality of ap-
proximation of classification v,, (4, we find
that the similarity thresholds tend to be
greater due to the condition that the elements
in the tolerant set is contained in the same
class and thus the classification result shows
that the sizes of partitions become too small.
Sometimes, the classification result leads to
an extreme case that most partitions consist
of only a single object. So, it is required
that some objects that are contained in the
same class are tolerable as much as possible in
order to compensate this over-partitions, To
meet the above second requirement, we define
the ratio of good connections «,, (4} that ex-
presses a ratio of good connections to all pos-
sible connections as

card(ta O {(z,y){d(z) = d(y)})
card({(z,y)|d(z) = d(y)})

As the similarity threshold values increases,
the ratio of good connections a, (4} decreases
because the size of tolerant sets decreases with
the increase of the value of similarity thresh-
olds, and thus the number of good connections
becomes smaller.

(11)

Cra{d} =

Since two coefficients v;, 14) and a;, jq) are
operating inversely with the increase of the
value of similarity thresholds, we take the fit-
ness function £ in order to balance two coef-
ficients as

F=wxy,aq+1-w)xar qq. (12)
where w and (1 — w) are the weight constants
that can be changed according to the goal of
classification. Here, the first term makes some
tolerant objects to be contained in the same
class and the second term makes the objects
in the same class to be tolerant.

3.4 Genetic Operations

The initial population of similarity thresholds
are then evolved by appropriate genetic opera-
tions in order to find a set of optimal similarity
thresholds for the pattern classification. The
detailed explanation about the genetic opera-
tions used for the determination of the optimal
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similarity thresholds is given as follows.

3.4.1 Reproduction

We use a mixture of selection methods [9]
for reproducing the chromosomes. The first
selection method is an elitism that the best
chromosome with the highest fitness value 1s
passed in the new population. The second
selection method i1s a modified k-tournament
method. In this method, a chromosome hav-
ing the best fitness value among the & chro-
mosomes selected from the upper class of fit-
ness values randomly is chosen for the repro-
duction. Two chromosomes C'; and C2 ob-
tained by repeating the above procedure con-
secutively create a new chromosome Coyrm by
applying the crossover and mutation opera-
tions explained later. The above reproduc-
tion procedure is repeated as many times as
pselect x | P|, where |P| is the population size.
Finally, the remaining portion of the popu-
lation set is filled by copying the population
set in the order of magnitude of fitness values.
Fig. 2 shows a hybrid reproduction method
based on a mixture of three different repro-
duction methods.

nth generation {n+1)th generation
Efist Best Chromosome
Selection
K-toumnamented
1 Chromosomes
| S —
! Newty Created
| Chromosomes
‘,
! 70%
1
I
! 30%
I
|
T-wumamenl Selection
Crossover
Mutation
Random Generation
[
L
Figure 2: A proposed hybrid reproduction
scheme.
3.4.2 C(rossover

Basically, the crossover between two selected
chromosomes C; and C — 2 is performed as
follow. Let the zth similarity threshold values
of two selected charomosomes C; and Cy be
t1(a;) and f2(a;) and the fitness values of two
selected charomosomes C7 and Cs be F} and
Fo. Then, the ith similarity threshold value
t.(a;) of the new chromosome C. created by

the crossover operation is computed by an av-
erage weighted by fitness value as

Fy x tl(a,’) + Fy x to(ay)
tc(a,') =
Fi + Fy
This operation is applied to the overall simi-

larity thresholds of two selected chromosomes
in the crossover probability P..

3.4.83 Mutation

(13)

Mutation is performed as follows. Firstly, a
chromosome (" is selected randomly from the
population in the mutation probabihity 7,,.
Secondly, the similarity threshold value t'{a;)
in the selected chromosome €’ is randomly se-
lected and it is mutated by the following.

tm(a;) = 1.5 — t'{a;), (14)
where t'(a;) and t,,(a;) are the selected sim-
ilarity threshold and the mutated similarity
threshold, respectively. The above computa-
tion implies that the mutation turns over the
threshold value with respect to 1.5. The con-
secutive execution of the crossover and muta-
tion operations complete the genetic operation
and it creates the new chromosome C 4. Fig.
3 summarizes the determination of the optimal
similarity threshold values using the genetic
algorithm.

Algorithm (Input : A= (U,AUd ), s4:Vax Va4[0,1]Vae 4,
Output : {tU{t(a) :a € A}})
1. Initialization
Read information table.
Define the similarity measure.
Generate initial population : Take initia] thresholds in {0, 1].
Evaluate fitness function of initial population;
2. Perform the genetic algorithm
while ~ (stop_condition) {
Reproduction();
Crossover();
Mutation(),
Evaluate fitness function of new population;
WX e ) + (1 - @) X ar, gg)

3. Determine the optimal similarity threshold values.

Figure 3: Determination of the optimal simi-
larity threshold values using GA.

4 Pattern Classification based
on the Tolerant Rough Set

We propose a new two-stage pattern classi-
fication method based on the lower and up-
per approximation set extracted from the set
of training samples. Basically, the method 1s
performed in the stage-wise in a way that the
test sample are trying to be classified using
the lower approximation set in the first stage
and then the test sample that are impossible
to classify in the previous stage are trying to
be classified using the upper approximation set
in the second stage. A detailed explanation of
each stage’s task is given below.
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4.1 1st stage : Classification using the

Lower Approximation Set

We obtain a tolerant set TS[(S:L') of a test sam-
ple &, where the subscript ! denotes the lower
approximation set. When the tolerant set
TS;(z) of the test sample = consists of only
itself, i.e. TS;(z) = {z}, we can not classify
the test sample z in the first stage and we
pass the classification of such a test sample to
the second stage. When a tolerant set 7'S(z)
of a test sample = consists of many training
samples, the relative frequency of class inclu-
sion of the training samples in the tolerant set
TS(z) is obtained. When the training samples
in the tolerant set T'S(z) split the decisions,
we assign the test sample z to the class that
has the largest relative frequency value by the
majority voting method. When the difference
between the largest and the second largest rel-
ative frequency values is not too much, i.e.,

reqi— fre 1 . .
L—‘?qu%—ﬂ < Tay where freq; and freg, are

the largest and the second largest relative fre-
quencies, respectively, and r(d) is the number
of decision classes, we also pass the classifica-
tion of such a test sample to the second stage
because the class inclusion is uncertain (fuzzy)
under the the given lower approximation.

4.2 2nd stage : Classification using
the Upper Approximation Set

Since the upper approximation set includes
the all training samples in the lower approx-
imation set and the training samples in the
lower approximation set has been considered
in the first stage, we are using the training
samples in the boundary region, not all sam-
ples in the upper approximation set, in the
second stage of classification. So, the com-
putation time for classification in the second
stage is not too long because only the sam-
ples in the boundary region are taken and
the number of samples in the boundary re-
gion is not too many. Similarly in the first
stage, we obtain a tolerant set T'Sp(z) of an
unclassified test data x, where the subscript b
means the boundary region. Then, we obtain
the rough membership functions of all sam-
ples in the tolerant set T'Sp(z) of the unclas-
sified test sample z with respect to the deci-
sion classes using Eq. (20). Let the tolerant
set T'Sp(z) of the unclassified test sample z
be {y1,y2, -, ym}, where M is the number of
samples in the boundary region that is tolerant
with the test sample z, and assume that each
tolerant sample y; has the rough membership
functions {uq, (y;)]¢ = 1,2,---,r(d)}. Then,
we can compute the average rough member-
ship function of the test sample  with respect
to each decision class as

M

_ 1 .

Ha,(2) = i Zud,(yj), i=1,2,---,r(d). (15
j=1

We assign the unclassified test sample z to
the class that has the largest average rough
membership function. When the difference
between the largest and the second largest

~——

average rough membership function is not

too much, ie., Hmani"Himesz < ;(IT), where
maxl

fd,..., and fig . are the largest and the sec-
ond largest average rough membership func-
tion, respectively, and r(d) is the number of
decision classes, we reject the test sample x in
the process of classification. Fig. 4 shows the
procedure of our proposed two-stage classifi-
cation method.

LTramm-J sanpleil

A

l Test sampes

Cecid3 opimal
theshoid vakues

Clessihied deta
(correct or wong)

Fuzziness
evaluation

Furzy
status

- Rejected data

te arerage rough MF
i each class

Crsp
stalis

8s5ign the sample
tc the =lass

whose rough MF

15 16 maamum

Clessied deta
{corsect ar wrong;

Figure 4: The proposed two-stage classifica-
tion method.

5 Simulation Results and
Discussion

We performed the pattern classification using
the 100 handwritten numeral character set [10]
in order to validate the proposed pattern clas-
sification method and compared the classifica-
tion rate and training time with other classi-
fication methods. Fig. 5 shows a sample data
set that consists of 100 handwritten numeral
characters (ten sets of 10 numeral characters
from 0 to 9). The 100 handwritten numeral
characters are read by the 300 dpi HP scanner
and they are normalized in the size of 18 x
18 pixels. Each numeral character is charac-
terized by 20 attributes that is defined by the
pixels of four nonoverlapping subregions {left,
right, up, and down) and along the four diag-
onal half-cross axes (left-up, left-down, right-
up, and right-down)[11].

We obtain 12 attributes (a; — a;2) by per-
forming the vertical projection, the horizon-
tal projection, and the number of pixels of
four nonverlapping subregions and obtain 8 at-
tributes (@13 — a0) by checking the existence
of pixels and counting the number of pixels
along the four diagonal half-cross axes. Table
1 shows the implication of each attribute, the
range of the attribute value, and the quanti-
zation of the attribute value. Table 2 shows
the attribute values of 50 sample data that
are randomly selected 5 samples among the 10
samples per each class. We used the 50 sam-
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O 12 3 4+ 567893
o 1 2 339495 67%9
o 1 2 &3 4 5 67%9
o1 2 34 5 678% 3
o1 2 24 5 67 %3
o1 2 3245 67 %9
o112 24s 67 %3
w1 2 345 6783
o1 2 3 45 733
012 3 45 67 % 38
Figure 5: 100 handwritten numeral character
samples.

ples to train the optimal similarity threshold
values and the lower and upper approximation
set.

Table 1: Definitions of 20 attributes.

Attnbute Meaning Range | Quantization
a Vertical projection | # of pixels of Left <04>10
3] # of pixels on Right | 0-16 [ <5,8> = 1
a3 Horizontal projection | # of pixels of Up <8,12> 32
ag # of pixels of Down <13,16>33
as # of pixels of Left
g #ol pixels of Right | 0-8 | <0,4> 0
a7 Vertical projection F of pixels of Up <3.8> a1
ag # of pixels of Down
ag # of pixels & of pixels Left <0,17>=0
arg Folpixes Right | 0-72 [<8,%>>1
a5y & of pixels Up <3.53> =2
ayy # of pixels Down <HTI>>213
a3 Presence of pixels left-up -+ center
ay4 in half-cross nght-up - center | 0-1 0
a5 TeR-down - center t

[ e . right-down - center
ar_ | Majority of pixels left-up -» center
a5y i in halfcross nght-up - center | 0-9 | <0,4>=10
oy — leR-down - center <5951

_B_E—t right-down - center

The sample data in the Table 2 is used for
training. Table 3 shows the execution param-
eters of the GA that is used for the optimal
similarity threshold values. Table 4 summa-
rize thie optimal similarity threshold values of
all attributes that are obtained from the GA.

Fig. 6 shows the evolution curve of the fit-
ness functions when the GA is applied to de-
termine the optimal similarity threshold val-
ues, where each curve represents the fitness
value of the best chromosome in the popula-
tion. In this figure, the fitness function F)
represents the fitness value of the quality of
approximation of classification v,, (4 (weight
w = 0.6), the fitness function /s represents the
fitness value of the ratio of good connections
ry {4y (weight 1 —w = 0.4).

From this figure, it is noted that the fit-
ness value is converged within the 10 itera-
tions. So, it requires a small amount of com-
putation time to determine the optimal sim-
ilarity threshold values. Based on the op-
timal similarity threshold values, we obtain
the lower and upper approximation set using
the method mentioned in the previous sec-

Table 2: 50 training samples represented by
all attributes.

[ CYTY O AririGutes(a, - azo) .
W HA000011 11111106000
2422100011111 1110000

53 “4%MHOU1011I11111I0000
2 R4d20000211111110000
42421 00091111111 0000
OF3FTIITOITO0OLIFTOITOTTO1TO
O®311010011111011010

2 2491111013 U011011010
032011110221 11011010
0241113102111 1011010
1724011 1011811111010
“1W¥1011101%1131110001

1] 122 30001111211110011
H0%831010201111110001
1123001200121 3111000271
0ITTBI010004 T 111111010
1423010002 1101111010

) 11230112011 1111110010
11943031 10111111110010
1423011 0111111111010
1310111110111 1010000
10101 111101011010010

a 101011111011 11010010
1111111111111 1110010
101011 11311111111 1010
T 11001 19d11 1110110
B2 @ #1110 1%111110110

5 2138101011211 1110110
4133 1131011%111110110
T2 8 BOO1O1 12113110110
24U XD I1T100F1 1111110100
21 2®22110022111211110100

) 2122431 110211111110100
“% 13V 100411111110100
21221 10081111021 10100
02391000101 1111011010
V2991001101 21110110071

T 0230000101101 1011010
V2 FQ00OV1IO11011011010
02300001021 1111011010
T2 d1 01141141111 0000
%1 w4111 1112%11110000

s 11%21011111%211110000
B 12810102022 10110000
P 8B W11 012111 11l1lU00O0
T H G W1 1001411111 10000
2332110021221 111310000

[ 2332132001211 11110010
28381 1101W2111110010
239 B3 11 O2W1 111110019

Table 3: Execution parameters for GA.

Excution parameters Values
Population (| P[) 100
Reproduction (P, icce) 0.3

k-tournament 8

Crossover probability (Z.) 0.3
Mutation probability (Pm) 0.1
No. of generations 200
Weight constant {w) 0.6

tion. Then, we performed four different pat-
tern classification tasks such as Simulation 1
(= TRS + T50), Simulation 2 (= NN + T50),
Simulation 3 (= TRS + T100), and Simula-
tion 4 (= NN + T100), where TRS and NN
mean the pattern classification methods us-
ing the tolerant rough set and the neural net-
work, respectively, and T50 and T100 mean
that the classification test was performed on
the 50 training samples and the 100 sample
data that included the 50 non-training sam-
ples, respectively.

Table 5 shows the comparison results of the
classification performances of simulation 1 and
2 in terms of confusion matrix, where only the
sample data that were included in the training
phase were tested and each sample data was
represented by all attributes. From this table.
it is noted that there is no rejected sample or
misclassified sample in the case of using the
tolerant rough set (simulation 1) or the neural

Table 4: Optimal similarity threshold values
with respect to all attributes.

Attribute | oy | a7 | a3 | & | as | o5 | o7 | e | @ | e | A
Threshold { 0.4 1 0.54 | 041 [ 0.61]0.37 [ 0.30 [0.43] 048 [ 0.31 1 0.39] 0.4
Attribute | oy | a9 | ma | oy s | a6 | | Gig | g | Om
Threshold | 0.41 1 0.39 ] 0.30 ] 0.36 [ 0.64 ] 0.68 | 0.44 1 0.56 | 0.47 [ 0.51
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Figure 6: Evolution curves of various fitness

functions.

3 0
NumBer of genera t

network (simulation 2).

Table 5: Classification performances using all

lons

attributes (Simulation 1 and 2).

[ Classification

| Tolerant rough set

Neural network

Confusion
matrix

5000000000
0500000000
0050000000
0005000000
0000500000
0000050000
0000005000
0000000500
0000000050
0000000005

5000000000
0500000000
0050000000
0005000000
0000500000
0000050000
0000005000
00060000500
0000000050
0000000005

None

None

Rejection
Misclassification

None

None

Table 6 shows the comparison results of the
classification performances of simulation 3 and
4 in terms of confusion matrix. where addi-
tional 50 sample data that were not included
in the training phase were tested and each
sample data was represented by all attributes.
From this table, it is noted that there is one
rejected sample (53th sample) and three mis-
classified samples (6th, 80th, and 84th sam-
ple) in the case of using the tolerant rough set
{(simulation 3) and there is no rejected sam-
ple and three misclassified samples (6th, 55th,
and 80th sample) in the case of using the neu-
ral network (simulation 4). The notation 6th
{0 — 9) in the fourth row of the Table 6 rep-
resents that the 6th sample whose true class is
'0’ is misclassified into the class ’9’.

Table 6: Classification performances using all
attributes (Simulation 3 and 4).

[ Classification | Tolerant rough set ] Neural network I
9000000001 (9000000001
01000000000 0100000000°0
00100000000 00100000000
000106000000| 00010000000

Confusion 0000900000)000010000¢00
matrix 00000100000[{ 0000091000
00000010000]00000010000
00000001000(0000000100°0
6000001081 |100000009°0
00000000010{00000000010
Rejection 53th None
Misclassification | GEh(0 = 9), S0Ch(8 = ), | GUh{0 = 9}, 55th(5 = G,
84i8(8 - 6) 80th(8 -+ 0)
Fig. 7 compares the classification perfor-

mances and the training times among four dif-
ferent simulations when each sample data is
represented by all attributes. From this fig-
ure, it is noted that (1) the training time to
be taken for determining the optimal similar-
ity threshold values is very shorter than that
for determining the weight vectors of the neu-
ral network and (2) the classification perfor-
mances of two classification methods are al-
most similar in terms of the number of rejected
and misclassified samples.

Percentape(%)
100

99—«7

[~ 71 # of terstions # of terations
) Misclassification r;: L 1000
EERZEEY Rejection rate .
- i

Simuiation 1 2 a 4

Figure 7: Comparison of classification perfor-
mances and learning times using all attributes.

6 Conclusion

The proposed two-stage pattern classification
method based on the tolerant rough set re-
quires to define the similarity measure by the
distance function of attributes between two
objects, to determine the tolerant set among
the objects, and to determine the lower and
upper approximation set of the the objects
based on the class information.

We used a very simple distance function like
the absolute difference of attribute between
two objects due to its low computational cost
and We used the genetic algorithm to deter-
mine the optimal similarity threshold values,
where the goal of evolution is to balance two
requirements such that (1) it is required that
some objects that are tolerant each other are
included in the same class as many as possi-
ble and (2) it is required that some objects
that are contained in the same class are tol-
erable as much as possible. After finding the
optimal similarity threshold values, we com-
puted the tolerance set of each training and
sample. Based on the tolerance set, we deter-
mined the lower and upper approximation set
of the training samples. The proposed pattern
classification method consisted of two stages
as follows. First, the test samples were classi-
fied using the lower approximation set. Next,
the unclassified test samples in the first stage
were re-classified using the rough membership
values based on the upper approximation set.
Some fuzzy test sample were rejected in the
process of pattern classification.

Simulation results showed that (1) the num-
ber of misclassified samples in the case of us-
ing the tolerant rough set was slightly smaller
than that in the case of using the neural net-
work, which reflected more excellent avoid-
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ing power of the classification by the tolerant
rough set, (2) the number of rejected samples
n the case of using the tolerant rough set was
slightly greater than that in the case of using
the neural network, which reflects the soft de-
ciston power of the classification by the toler-
ant rough set, and (3) the training times of two
classification methods were O(10) and O(103)
i terms of number of iterations in the case
of using the tolerant rough set and the neural
network, respectively, which reflects the very
fast training time of the classification by the
tolerant rough set.

We believe that the superiority of the clas-
sification performance of the proposed stage-
wise pattern classification method comes from
the fact the similarity threshold values that
were required to determine the similarity be-
tween two objects in the training samples were
determined optimally by using the genetic al-
gorithm. One limitation of the proposed pat-
tern classification method is that we need to
know the class invocation of the training sam-
ples in advance. In future, we will extend the
proposed pattern classification method based
on the tolerant rough set to the unsupervised
clustering problem:.
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