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Optimization of Transient Stability Control
Part-1: For Cases with Identical Unstable Modes

Yusheng Xue, Wei Li, and David John Hill

Abstract: Based on the stability margin provided by the EEAC, the unstable contingencies can
be classified into sets according to their unstable modes. This two-part paper develops a
globally optimal algorithm for transient stability control to coordinate preventive actions and
emergency actions. In the first part, an algorithm is proposed for a set of contingencies having
identical unstable modes. Instead of iterations between discrete emergency actions and
continuous preventive actions, the algorithm straightforwardly searches for a globally optimal
solution. The procedure includes assessing a set of insufficient emergency schemes identified
by the EEAC; calculating the related preventive actions needed for stabilizing the system; and
selecting the scheme with the minimum overall costs. Simulations on a Chinese power system
highlight its excellent performance. The positive results obtained are explained by analogizing
settlements for 0-1 knapsack problems using the multi-points greedy algorithm.

Keywords: Extended equal area criterion (EEAC), nonlinear mixed programming, optimization,

power systems, transient stability control.

1. INTRODUCTION

Two kinds of transient stability controls (TSC),
namely preventive control (PC) and emergency
control (EC), have been applied widely in modern
power systems. PC usually employs continuous
actions, influences pre-contingency operation and
affects the system dynamics during and after any
contingency. It is the most straightforward way to
compare the actual operating point with the stability
domain in the power-injection space. For maintaining
the load supply, the generation reduction of the
unstable cluster should be compensated by the
increased output of others. The actions of EC are
usually discrete, contingency specific and free from
influencing the normal operation. Its decision-making
can be modeled as a nonlinear integer-programming
problem. Despite being relatively cost effective, the
cost of PC spans the entire action period whether any
objective disturbances occur or not, making it
uneconomical or even infeasible in some
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circumstances. In contrast, EC actions usually cost
dearly, and require restoration time following the
actual occurrence of objective disturbances. Obviously,
the coordination between PC and EC would lead to
significant cost saving.

There have been many efforts to develop optimal
PC and optimal EC methods [1-7]. Some of them
simply check the stability of the static-security-
constrained optimal solution. Others are limited to
small systems and very few contingencies; their TSC
decision-making relies on trial-and-error and heuristic
knowledge. Moreover, PC and EC systems have been
considered separately in research as well as in practice
Scala et al. [8] gave a general formulation to both
stability-constrained economic dispatch and optimal
EC. However, they are still treated as two individual
problems. This contrasts with other areas of power
system control such as voltage control where optimal
coordination techniques are emerging [9]. If the
original operating point X, is potentially unstable, PC
may be activated prior to the contingency occurrence
in order to move the system to a target point Xy that
may be yet insecure for some contingencies. When an
unstable contingency-i is detected, relevant EC; is
activated immediately. Xue [10] proposed a general
optimization framework for coordinating PC and EC.
Based on it, this paper develops an optimal algorithm,
which searches for global optimization in a hybrid
decision space. Part-1 deals with the optimal TSC for a
set of contingencies having the identical unstable mode
(UM), and Part-II deals with the cases having different
UMs.
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2. THE FOUNDATIONS AND FRAMEWORK

2.1. Foundations for TSC optimization

Coordination between PC and EC is a nonlinear
mixed programming with both integer and continuous
variables. This is a very difficult problem even for
contingencies with an identical UM. Effective
optimization algorithms should be founded on the
mechanisms of transient stability, decomposition
principle, and the optimization and coordination of
pure PC actions with pure EC actions.

2.2. Mechanisms of transient stability

An unstable system always separates into a cluster
of critical machines (cluster-S) and a cluster of non-
critical machines (cluster-A) [11]. The UM is a very
important concept used to characterize system
separation. An action applied on cluster-S affects the
stability in the opposite way to the same action
applied on cluster-A. When a certain action enhances
the stability of a UM, it may further the instability of
other UMs.

UM identification is the key for (1) decoupling all
the contingencies into sets, each of which is
characterized by a unique UM; (2) selecting the search
direction; and (3) coordinating the conflicts among the
PC actions. The last point will be reported in Part-II of
this two-part paper.

A stability margin of a disturbed trajectory is
essential for defining the objective function of optimal
TSC. The sensitivity analysis of the margin is the
basis for choosing the appropriate searching step. On
all accounts, quantitative methods for stability
analysis and UM identification are foundations of an
optimal TSC.

The extended equal area criterion (EEAC) is just
such an approach [12]. Tt integrates the full system
model in the multi-machine space, and then divides
the complete disturbed trajectory into complementary
clusters in all possible ways, corresponding to swing
modes. For each mode, the trajectories are aggregated
into those of an equivalent two—machine system. The
necessary and sufficient conditions of stability are
rigorously preserved into the most unstable mode,
namely UM. In particular, the margin of the UM,
labeled as m, represents the stability degree of the
original system.

The EEAC breaks through the limitations of direct
methods, thereby becoming applicable to any detailed
models, complex scenarios and multi-swing stability
while maintaining a manageable computational
burden. It has been applied and is serving widely at
home and abroad for power system planning, analysis,
on-line operation, as well as for PC and EC.

Being quantitative and very informative, the EEAC
can identify UM and sub-critical modes, decide both
searching direction and searching step for optimizing

TSC. Besides, it is fast enough for on-line tracking of
system changes.

2.3. The optimization of pure PC actions

Based on the UM identification and quantitative
assessment of the EEAC, the stability domain concept
in the power-injection space is applied to PC in Xue et
al. [13]. The optimization of PC, namely moving the
operating point into this domain by redistributing the
power-injection with minimum additional operating
cost, is a nonlinear continuous- programming problem.
The smailler the excursion from the original operating
condition is, the lower the additional operating cost.
The relevant software has been implemented in EMS
for engineering services in the Dongbei grid and
Guangxi grid.

2.4. The optimization of pure EC actions

The optimization of pure EC actions is a non-
convex nonlinear integer-programming problem.
Cheng and Xue [14] proposed a very effective
algorithm, whose effectiveness was validated by
numerous simulations and engineering applications.
The ratio of finding the genuine optimum is over 98%
while sub-optimal solutions were obtained for the
other 2%. The relevant software has been
implemented in adaptive system protection schemes
for engineering services in the Shandong grid and
Guangdong grid.

2.5. The optimization of PC and EC

Due to the complex mutual-influences between PC
and EC, the globally optimal TSC is even more difficult
to achieve. Xue [10] proposed a general optimization
framework for the coordination aspect, where the task
is formulated as a nonlinear hybrid-programming
problem with both integer and continuous variables and
with many stability constraints. The objective function
is the sum of the daily cost for PC and the possibility-
weighted cost for EC.

Unstable contingencies are firstly classified into
subsets according to their UMs. During the optimal
procedure, their UMs should be checked consistently
to identify any possible changes resulting from the
actions. Since all contingencies in such a subset have
the same critical machines, a certain TSC action has
the equivalent qualitative effects on their stability.

The two-layer TSC optimization consists of a lower
layer for local coordination within each subset and an
upper layer for global coordination among all subsets.

3. OPTIMIZING TSC FOR CASES WITH
IDENTICAL UMS

3.1. Models for optimizing TSC
The EC+PC optimization can be formulated as:

min c(Xp)=min (cpe(XT)+ Cpc(XT,€)) (H
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=min (cpc(xX7)+ D, Cpci(XT,€,))s
i=1
st g(xp)=0, (2)
h(xy,e) >0, 3

where C (or Cpc) is the total TSC (or PC) cost for a
chosen time interval of interest; Cgc (or Cgc;) is the

total cost for EC actions e (or the cost ofe; for
contingency-i); «; is the expected number of times of

contingency-i during the assessment time interval; and
Xt is a target point resulting from PC actions. (2)
represents load flow constraints etc. Inequality (3)
represents various security constraints including
transient ‘stability. cgc;(xg) is the solution of the

following sub-problem:

mein ceci(€;(x1)), 4)
st. f(e)>0, (5)
A;(x7,€;)20. (6)

Inequality (5) represents capacity constraints of the
emergency actions: the quantity of every action
cannot exceed its maximum value and the total value
of exclusive actions cannot exceed the relevant
maximum value, for example generator tripping and
fast-valving are mutually exclusive for a generator.
Inequality (6) ensures that the system security has a
positive margin for every pre-assigned contingency.
(5) and (6) may be only subsets of (3).

3.2. Pictorial explanation

Fig. 1 illustrates the minimization of the total cost
of TSC (1). Suppose the total generation of the critical
machines (P;) is increased according to some
particular pattern; then we can associate each Ps with
a XT and re-express the cost as the sum of Cp(P;)
and CEC(Pe). The abscissa is the total generation of
the critical machines (Py); Py, 1s the original value that
is assumed to be the optimal solution without stability
constraints; the larger the excursion from P, the
higher the additional operating cost (see curve Cpc);

Cost

Ps‘lim PS.T Ps.o

Fig. 1. Coordination between Cpc and Cec.

Py i is the stability limit with no EC action). If
Psim>Ps,, the system is stable without TSC. If
Py im<Pso; TSC actions are necessary to keep the
system stable under the relevant contingency.

There may be three choices for the unstable case:
(1) only relying on PC, i.e. reducing P; to be less than
Psiim; (2) only relying on EC, i.e. increasing Pgyy to
be larger than P, with EC actions; (3) applying
PC+EC, i.e. reducing P; to a target value Py
beforehand, and applying proper EC actions in the
event of contingency.

The sawtooth-like curve Cpct+Cgc represents the
cost of the hybrid TSC, along which the point with the
minimum ordinate value (P, in Fig. 1) corresponds
to the optimal TSC. The optimization is just a
procedure of searching for Py,

4. THE ALGORITHM FOR CASES WITH
IDENTICAL UMS

4.1. A common decomposition scheme

Decomposition-iteration methods are  widely
utilized in the large-scale system fields [15]. Zhao et
al. [16] model an optimization problem as

1
min f(Y:X)sz(Y)+Zﬁ(Y9xZ)’
i=1
st ge(Y)L0 k=1,2---K, : @)
hi’j(Y,xi)SO i=,2---1; j=12---J,

where f(Y,X) is the objective function with two

XI]T . The

task can be decomposed into a two-layer optimization
model as shown in Fig. 2. The common optimization
steps are: (1) selecting an initial Y, ; (2) for sub-
model-i at the layer-1, optimizing x; under the
resultant Y ; (3) at the layer-2, optimizing Y under the
resultant X ; (4) repeating steps 2 and 3 until
convergence is achieved.

The TSC optimization model, (4-6), is of the form of
(7). However, since a PC action has different influences

kinds of variables, i.e.Yand X =[x,x,--

min (Y, X)

s.t. g,(Y)<0
X1
min f,(Y,x,)

min f(Y, x;)
h (Y, 5)<0 B, (Y,x) <0

min f,(Y,x,)
h (Y, x)<0}

Fig. 2. A common two-layer decomposition.
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on EC effects of various contingencies, it is hard to
select the modifying magnitude of PC actions. All EC
schemes should be evaluated again if any change in
PC actions occurs, which makes the computation
burden extremely high. It is preferable if the number
of iterations can be reduced or even avoided.

4.2, The problem-based decomposition for TSC

If no TSC action is needed, the original operating
condition X, might seem to be the optimal one. If
TSC actions are necessary, pure PC actions can be
optimized as mentioned in Section 2.3, or pure EC
actions can be optimized for an individual
contingency as mentioned in Section 2.4.

Up to now, however, it is still a big challenge to
optimize PC and EC collectively.

Once the EC actions are fixed, they can be treated
as the details of the simulation scenarios to calculate
the generation limits and the minimum additional PC
actions. It is possible to formulate the optimization of
PC and EC as an iteration procedure between a pure EC
scheme and a pure PC scheme. However, extremely
heavy computational burden and convergence
difficulties make this infeasible in practice.

If good candidate EC schemes can be filtered out
based on the nature of the TSC problem, and if the
actual optimal or sub-optimal solution is among them,
the number of iterations can be largely reduced or
even eliminated.

During searching for the optimal pure EC scheme,
it may be realized that many pure EC schemes have
already been assessed. Although some of them are
insufficient for stabilizing the system, they might be
quite economical or even optimal if proper PC actions
are taken jointly to make the system stable. Therefore,
not only the optimal pure EC schemes, but also the
insufficient ones are valuable candidates. The optimal
PC+EC scheme is likely to be one of them.

Even if the discrete control space is high-
dimensional and the number of possible EC schemes
is big for one contingency, the optimal EC scheme as
well as the insufficient EC schemes and stability
limits can be obtained very effectively.

After candidate EC schemes for each contingency
are selected respectively, the candidate PC+EC
schemes for the whole set of contingencies can be
obtained. Then, xt and the optimal PC+EC scheme

can be identified among them.
Only if the effectiveness-cost-ratio of the resultant
PC, namely Anpc /cpe(Xt), is much larger than the

weighted ratio of EC, Anpe /cpe(xp) , it is
preferable to repeat the procedure with xr as the

newx, .

4.3. Description of the proposed algorithm
There are three key factors that have great impacts

on the algorithm performance when developing a
globally searching algorithm. They are: (1) the initial
candidate solutions; (2) the neighborhood of a
candidate solution; (3) the searching strategies.

4.3.1 The initial candidate solutions

For a certain point in the power-injection space,
such as the result of economic dispatch, EC
optimization is performed for every pre-assigned
contingency respectively. A set of insufficient pure

EC schemes U; is found for contingency-i, where

i=1,2,---n and n is the number of pre-assigned

contingencies.
Then, these insufficient EC schemes in U; are

ranked according to their effectiveness-cost ratios, i.e.
An/A ¢, where A (orA c¢) is the change of the

stability margin (or cost) introduced by the scheme.
The top ranked m schemes consist of a set of
candidates, labeled as A; for contingency-i. The

additional PC actions, which are necessary and
adequate for stabilizing the system, are estimated with
the EEAC.

There are at most mxn feasible TSC schemes,
which ensure the system stability under any one of the
pre-assigned contingencies.

4.3.2 The neighborhood of a candidate solution
The neighborhood of a candidate scheme is the
insufficient EC schemes in U;, whose additional PC

action is closest (either more or less) to that of the
candidate scheme.

4.3.3 The searching strategies

From a global viewpoint, the searching for the
optimal solution is performed for every candidate EC
scheme in order to avoid trapping in local minima.

In a local sense, only those neighborhood schemes
in the set U; with decrement in the total cost are

considered. This is to enhance the search efficiency.
Furthermore, to prevent cycling in the procedure, all
the previously visited solutions should be memorized.

5. SIMULATIONS

An actual Chinese power grid, which is modeled
with 75 generators, 730 buses and 2 external DC
equivalent buses, is tested hereafter. Some severe
contingencies correspond with a UM consisting of 10
machines.

Accurately pricing out PC actions and EC actions
for TSC is very important for engineering practice
[17]. Generally, EC costs should include option fees
for making the service available and exercise fees for
executing the actions [18], which might change
according to the market operation.

Focusing on the optimization algorithm itself, the
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cost for each action is set here as a time-invariant. By
changing the set of constants, different test cases can
be arranged just based on a unique X, in order to
evaluate the proposed searching algorithm.

The evaluation is performed by comparing the total
cost of the recommended. scheme (labeled as Ci..) to
the ideal one resulting from exhausted simulations
(labeled as Cige). The cost for the pure EC (or PC)
scheme is labeled as Cgc (or Cpc).

5.1. For a single contingency

Table 1 indicates the Cre, Cige, Cec and Cpe for 8
cases. All cost constants of the PC actions remain
unchanged for these situations. However, the cost
constant of every EC action changes each time.

The Ci. equals to Ci4. for all cases, except for case-
6, where the proposed algorithm gives a sub-optimal
solution.

In case-2, the pure EC scheme is the ideal one. In
other cases, the coordination scheme is more
economical than pure EC and pure PC schemes.

Table 2 compares the integration trial-times of
different searching methods. The “Lucky trials”
means that the number m varies with both cases and
contingencies, and is the minimum value needed for
capturing the related optimal solution. These trials
require perfect apriority knowledge, thus they are
unrealistic and can only act as a reference.

The “General trails” fixes m=5 for all contingencies.

During the procedure, many insufficient EC schemes
might also be tested. The sufficient scheme along with
the insufficient ones is taken together as the candidate
EC schemes.

Table 1. Comparison of the resultant costs.
Case Copt Crec CEC CPC
1 229 229 250
100 100 100
189 189 200
187 187 200
219 219 250
128 140 140
179 179 200
167 167 170

273

[c RN Eo Y RO, o RVS | \S)

Table 2. Comparison of the integration times.

Case Integration trial-times
Proposed procedure Exhaustive

Trials | Lucky General
1 44 58 248
2 8 8 88
3 15 43 104
4 57 57 224
5 38 59 248
6 59 52 136
7 53 60 248
8 57 57 208

In an ascending order of their costs, the exhaustive
procedure assesses all the pure EC schemes in turn.
The searching stops upon locating the first sufficient
one that can stabilize the system under the
contingency. For each of them, the additional PC
actions, which are sufficient and economical for
stabilizing the contingency, and the total cost are
calculated. The most economical scheme is assigned
as the optimal solution, and the integration trial-times
are also provided in Table 2 as another reference.

In most cases, the integration trial-times of the
general trails procedure are quite close to those of the
lucky trials and much less than those of the exhaustive
search procedure.

In case-6, the general trails procedure only achieves
a sub-optimal solution; the lucky trials uses an m=>6.

5.2. For multi-contingencies with the same UM

Table 3 shows the results of optimal TSC for two
contingencies, where ab,~ ,f are 6 different EC
actions. The proposed algorithm obtains the real
optimal solutions for all the cases. Since these cases
only differ in the cost of the individual
countermeasure, the integration trial-times of the
exhaustive search remain unchanged.

Fig. 3 shows the situation in case-1, which favors the
proposed procedure. The lowest cost of EC changes
with both contingencies and PC actions, and many
local minima of EC cost are excluded successfully by
the proposed selection. Moreover, the initial solutions
are quite close to the optimal one, which increases

Table 3. Two contingencies with identical UM.

EC actions Integ. times

Case Conting. I | Conting.J | Prop. | Exh.

abcdef | abcdef | proc. | proc.
1 011001 | 000011 [ 155
2 001010 | 001010 53
3 100010 | 100011 92

4 101000 | 101000 96 476
5 101000 | 101000 | 127
6 001100 | 001100 | 131
7 000011 | 000011 | 113
8 110100 | 110100 98

Cost of EC actions

v
>

*

Contingency-I
Contingency-J

—¢— Low EC cost for I

— Low EC cost forJ

o

Initial schemes

; wal scheme
. ; .

100

200

300 400

Generation Rescheduling (MW)

Fig. 3. The optimal PC+EC for two contingencies.
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Table 4. Performance statistics of greedy algorithms
for solving O - 1 Knapsack Problems.

Num. of | Excursion from the optimal solution
o B0 1% | % | 10% | 25%
239 | 390 | 528 583 600
360 [ 527 | 598 600
3 483 | 581 | 600

the searching efficiency. The searches for the m initial
schemes and the share of the tried PC solutions
effectively avoid trapping into local minima.

6. DISCUSSION

The outstanding performances of the optimal TSC
algorithm originate from the EC optimization
algorithm [14], which selects EC schemes with the
highest effectiveness-cost-ratio. This is similar to the
greedy algorithm solving 0-1 knapsack problems [15].

For 600 knapsack problems produced randomly, the
performance statistics of greedy algorithms are shown
in Table 4, where m is the total number of the initial
values [19]. When m=1, the real optimal solutions are
obtained for 239 cases; 583 cases have sub-optimal
solutions with the excursion less than 10% while
maximum excursion is less than 25%. The
performances are greatly improved if m increases.

Although the number of EC schemes (2Vi -1, where

N; is the total number of EC actions available for

contingency i) is usually very large, the number of the
tested schemes is small. In fact, a large number of
simulations indicate that the optimal scheme is often
included in initial schemes.

7. CONCLUSIONS

Based on the quantitative assessment method
EEAC, this paper proposes an optimization algorithm
to coordinate PC and EC for contingencies with
equivalent UM. This is the basis for Part-II of the two-
part paper to finally deal with contingencies having
various UMs for real world TSC problems. A large
number of simulations on a Chinese power grid fully
demonstrate its excellent searching performances.
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