• Title/Summary/Keyword: series-resonant circuit

Search Result 190, Processing Time 0.029 seconds

DC Rail Side Series Switch and Parallel Capacitor Snubber-Assisted Edge Resonant Soft-Switching PWM DC-DC Converter with High-Frequency Transformer Link

  • Morimoto, Keiki;Fathy, Khairy;Ogiwara, Hiroyuki;Lee, Hyun-Woo;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.7 no.3
    • /
    • pp.181-190
    • /
    • 2007
  • This paper presents a novel circuit topology of a DC bus line series switch and parallel snubbing capacitor-assisted soft-switching PWM full-bridge inverter type DC-DC power converter with a high frequency planar transformer link, which is newly developed for high performance arc welding machines in industry. The proposed DC-DC power converter circuit is based upon a voltage source-fed H type full-bridge soft-switching PWM inverter with a high frequency transformer. This DC-DC power converter has a single power semiconductor switching device in series with an input DC low side rail and loss less snubbing capacitor in parallel with the inverter bridge legs. All the active power switches in the full-bridge arms and DC bus line can achieve ZCS turn-on and ZVS turn-off transition commutation. Consequently, the total switching power losses occurred at turn-off switching transition of these power semiconductor devices; IGBTs can be reduced even in higher switching frequency bands ranging from 20 kHz to 100 kHz. The switching frequency of this DC-DC power converter using IGBT power modules can be realized at 60 kHz. It is proved experimentally by power loss analysis that the more the switching frequency increases, the more the proposed DC-DC power converter can achieve a higher control response performance and size miniaturization. The practical and inherent effectiveness of the new DC-DC converter topology proposed here is actually confirmed for low voltage and large current DC-DC power supplies (32V, 300A) for TIG arc welding applications in industry.

6.2~9.7 GHz Wideband Low-Noise Amplifier Using Series RLC Input Matching and Resistive Feedback (직렬 RLC 입력 정합 및 저항 궤환 회로를 이용한 6.2~9.7 GHz 광대역 저잡음 증폭기 설계)

  • Park, Ji An;Cho, Choon Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.11
    • /
    • pp.1098-1103
    • /
    • 2013
  • A low-noise amplifier(LNA) using series RLC matching network and resistive feedback at 8 GHz is presented. Inductive degeneration is used for the input matching with which the proposed LNA shows quite a wide bandwidth in terms of $S_{21}$. An equivalent circuit model is deduced for input matching by conversion from parallel circuit to series resonant circuit. By exploiting the resistive feedback and series RLC input matching, fully integrated LNA achieves maximum $S_{21}$ of 8.5 dB(peak to -3 dB bandwidth is about 3.5 GHz) noise figure of 5.9 dB, and IIP3 of 1.6 dBm while consuming 7 mA from 1.2 V supply.

Application Method and EMTP-RV Simulation of Series Resonance Type Fault Current Limiter for Smart Grid based Electrical Power Distribution System (스마트 그리드 배전계통을 위한 직렬 공진형 한류기 적용 방법 및 EMTP-RV 시뮬레이션 연구)

  • Yun-Seok Ko;Woo-Cheol Lee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.2
    • /
    • pp.361-370
    • /
    • 2024
  • In this paper, a method was studied for applying a series resonant type fault current limiter that can be manufactured at low cost to the smart grid distribution system. First, the impact of the harmonic components of the short-circuit fault current injected into the series resonance circuit of the fault current limiter on the peak value of the transient response was analyzed, and a methodology for determining the steady-state response was studied using percent impedance-based fault current computation method. Next, the effectiveness of the method was verified by applying it to a test distribution line. The test distribution system using the designed current limiter was modeled using EMTP_RV, and a three-phase short-circuit fault was simulated. In the fault simulation results, it was confirmed that the steady-state response of the fault current accurately followed the design target value after applying the fault current limiter. In addition, by comparing the fault current waveform before and after applying the fault current limiter, it was confirmed that the fault current was greatly suppressed, confirming the effect of applying the series resonance type current limiter to the distribution system.

A Study of the Operation Characteristics of the Resonant Dual Converters (공진형 듀얼컨버터의 동작특성에 관한 고찰)

  • 양승학
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.2 no.4
    • /
    • pp.1-10
    • /
    • 1997
  • Resonant dual converters are remarkable as circuit topologies that can realize a power conversion on the high switching frequency with low switching loss. In this paper, bi-directional resonant power conversion system is established, which makes the powering and the regeneration possible, by loading an induction motor. For its practical use, the operation characteristics of the system are to be examined through a series of experiments. The characteristics are : (l)input/output, (2)resonants. (3)tum-off and zero voltage in the main devices and clamp device. By examining the measured waveforms, this study will investigate some problems in the system, and also give some suggestions for a further study.

  • PDF

Series Resonant type Sustain Driver for improving efficiency of PDP (PDP 효율개선을 위한 직렬공진형 Sustain 드라이버)

  • Kang, Feel-Soon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.250-253
    • /
    • 2007
  • This paper presents a new sustain driver employing energy recovery function to minimize power losses transpired during the operation of plasma display panel. The proposed circuit uses the resonance between the equivalent capacitance of panel and an external inductor to provide/recover energy to/from the panel. The proposed circuit can save the system cost compared with the conventional one, and has high-performance in energy recovery. To verify the validity of the proposed circuit, we implemented experiments based on 7.5 inch AC-PDP.

  • PDF

Theoretical Study of Pulse Circuits with the Load Variation for Device of the High Voltage Pulse Generator (고전압 펄스 발생 장치의 관한 부하의 변화를 고려한 펄스회로의 이론적 연구)

  • Kim, Young-Ju;Bang, Sang-Seok;Lee, Chae-Han;Kim, Sang-Hyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.30 no.3
    • /
    • pp.106-112
    • /
    • 2016
  • The high-voltage pulse generator consists of transformers of fundamental wave and harmonic waves, and shunt capacitors. The pulse has the fundamental wave and the harmonic waves that have been as a series circuit by the transformers to make high voltage pulse. This paper shows that pulse generator circuit is analyzed by using transformer equivalent circuits with the effect of load and simulated in time domain using Matlab program. The output voltage of pulse were obtained to 2.5kHz, 2.0kV. In high voltage circuit, capacitors are related to frequency band pass characteristics. Also, it is shown that the voltage of output pulse increases according to the growth of load.

High Frequency Inverter for Induction Heating with Multi-Resonant Zero Current Switching (다중공진 영전류 스위칭을 이용한 고주파 유도가열용 인버터)

  • Ra, B.H.;Suh, K.Y.;Lee, H.W.;Kim, K.T.
    • Proceedings of the KIEE Conference
    • /
    • 2002.06a
    • /
    • pp.38-40
    • /
    • 2002
  • In the case of conventional high frequency inverter, with damage of switch by surge voltage when switch gets into compulsion extinction by load accident and so on because reactor is connected by series to switch, or there was problem of conduction loss by reactor's resistivity component, Also, it has controversial point of that can not ignore conduction loss of switch in complete work kind action of soft switching. In this paper, as high frequency induction heating power supply, we propose half bridge type multi resonance soft switching high frequency inverter topology that can realize high amplitude operation of load current with controlling switch current by multiplex resonance, mitigating surge voltage when switch gets into compulsion extinction and to be complete operation of zero current switching by opposit parallel connected reactor to inverter switch. and do circuit analysis for choice of most suitable circuit parameter of circuit

  • PDF

Series Resonant Type Sustain Driver for PDP Driving (PDP 구동을 위한 직렬공진형 서스테인 드라이버)

  • Kang, Feel-Soon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.1
    • /
    • pp.115-121
    • /
    • 2008
  • This paper presents a new sustain driver employing energy recovery function to minimize power losses transpired during the operation of plasma display panel. The proposed circuit uses the resonance between the equivalent capacitance of panel and an external inductor to provide/recover energy to/from the panel. The proposed circuit can save the system cost compared with the conventional one, and has high-performance in energy recovery. To verify the validity of the proposed circuit, we implemented experiments based on 7.5 inch AC-PDP.

A Design of Electronic Ballast for 400[W] High Pressure Sodium Lamp Using IsSPICE (IsSPICE를 이용한 400[W] 고압나트륨 램프용 전자식 안정기 설계)

  • Kong, Eung-Seok;Shin, Dae-Chul;Choi, Choung-Moon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.5
    • /
    • pp.27-34
    • /
    • 2004
  • In this paper, we designed the electronic ballast for the 400[W] hight pressure sodium lamp using the half-bridge inverter Inductance and capacitance in the proposed equivalent LC series resonant circuit are calculated theoretically. We performed the simulation of the LC series half-bridge inverter circuit using the IsSPICE and the electronic ballast for the high pressure sodium lamp were implemented for verifing the simulation results. In the experimental results, the specification of the implemented electronic ballast are almost same with the simulated one. The experimental results show the good performance as PF 99.3[%], $A_{THD}$ 10.01[%], lamp efficiency 119[lm/W] at the output 400[W].].

Implementation of Zero-Ripple Line Current Induction Cooker using Class-D Current-Source Resonant Inverter with Parallel-Load Network Parameters under Large-Signal Excitation

  • Ekkaravarodome, Chainarin;Thounthong, Phatiphat;Jirasereeamornkul, Kamon
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1251-1264
    • /
    • 2018
  • The systematic and effective design method of a Class-D current-source resonant inverter for use in an induction cooker with zero-ripple line current is presented. The design procedure is based on the principle of the Class-D current-source resonant inverter with a simplified load network model that is a parallel equivalent circuit. An induction load characterization is obtained from a large-signal excitation test-bench based on parallel load network, which is the key to an accurate design for the induction cooker system. Accordingly, the proposed scheme provides a systematic, precise, and feasible solution than the existing design method based on series-parallel load network under low-signal excitation. Moreover, a zero-ripple condition of utility-line input current is naturally preserved without any extra circuit or control. Meanwhile, a differential-mode input electromagnetic interference (EMI) filter can be eliminated, high power quality in utility-line can be obtained, and a standard-recovery diode of bridge-rectifier can be employed. The step-by-step design procedure explained with design example. The devices stress and power loss analysis of induction cooker with a parallel load network under large-signal excitation are described. A 2,500-W laboratory prototype was developed for $220-V_{rms}/50-Hz$ utility-line to verify the theoretical analysis. An efficiency of the prototype is 96% at full load.