• Title/Summary/Keyword: series model

Search Result 5,387, Processing Time 0.032 seconds

Temperature Effects in the Resistivity Monitoring at Embankment Dams (저수지 전기비저항 모니터링에서의 온도효과)

  • Kim, Eun-Mi;Cho, In-Ky;Kim, Ki-Seog;Yong, Hwan-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.21 no.2
    • /
    • pp.82-93
    • /
    • 2018
  • Resistivity monitoring data at embankment dams are affected by the seasonal temperature variation. Especially when the seasonal temperature variation is large like Korea, the temperature effects may not be ignored in the longterm resistivity monitoring. Therefore, temperature effects can make it difficult to accurately interpret the resistivity monitoring data. In this study, through analyzing the time series of ground temperature collected at an embankment dam, ground temperature variations are calculated approximately. Then, based on the calculated temperature profile with depth, the inverted resistivity model of the embankment dam is corrected to remove the temperature effects. From these corrections, it was confirmed that the temperature effects are significant in the upper, superficial part of the dam, but can be ignored at depth. However, temperature correction based only on the temperature distribution in the dam body cannot remove the temperature effect thoroughly. To overcome this problem, the effect of temperature variation in the reservoir water seems to be incorporated together with the air temperature variation.

Characteristics of Membrane Fouling in the Membrane-Coupled Activated Sludge (MCAS) System (막격합형 활성슬러지 시스템에서 막오염 특성의 분석)

  • 김재석;이정학
    • Membrane Journal
    • /
    • v.8 no.3
    • /
    • pp.130-137
    • /
    • 1998
  • Membrane fouling characteristics in the membrane-coupled activated sludge system were investigated. The influence of the floc size variation on the filtration resistance was analyzed using resistance-in-series model and mixed liquor was fractionated into three components to verify which component would give rise to a major contribution to the total resistance. The microbial floc size was rapidly reduced during the initial 4~6 hours of operation, and then decreased slightly but steadily, followed by leveling off at the size of 20 $\mu$m. The specific resistance of activated sludge increased with operation time, and measured values of specific resistance were matched well with the values estimated on the basis of the mean particle size in the mixed liquor. The contribution of soluble organics and cells to the total resistance was relativdy small compared with that of the supematant. Colloidal particles in the supematant showed much higher specific resistance than that of microbial floc, and played the most important role in the cake resistance.

  • PDF

Experiments on the Denting Damage and Residual Strength of Stiffened Plates (보강판의 국부변형 손상과 잔류 강도의 실험연구)

  • Park, Sang-Hyun;Shin, Hyun Kyoung;Kang, Eungsoon;Cho, Sang-Rai;Jang, Yong-Su;Baek, Nam-Ki;Park, Dong-Ki
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.4
    • /
    • pp.182-190
    • /
    • 2020
  • This study reports a series of drop impact tests performed to generate denting damages on stiffened plates and their residual ultimate strength tests under axial compression. The models were fabricated of general structural steel, and each model has six longitudinal stiffeners and two transverse frames. Among six fabricated models, four were damaged, and two were left intact for reference. To investigate the effects of collision velocity and impact location on the extent of damage, the drop height and the impact location were changed in each impact test. After performing the collision tests, the ultimate axial compression tests were conducted to investigate the residual strengths of the damaged stiffened plates. Finite element analyses were also carried out using a commercial package Abaqus/Explicit. The material properties obtained from a quasi-static tensile tests were used, and the strain-rate sensitivity was considered. After importing the collision simulation results, the ultimate strength calculations were carried out and their results were compared with the test data for the validation of the finite element analysis method.

Research on the Instructional Strategies to Foster Problem Solving Ability as Mathematical Subject Competency in Elementary Classrooms (초등학교 수업에서 수학 교과 역량으로서의 문제 해결 능력을 함양하기 위한 지도 방안 탐색)

  • Choi, Inyoung;Pang, JeongSuk
    • Education of Primary School Mathematics
    • /
    • v.21 no.3
    • /
    • pp.351-374
    • /
    • 2018
  • The purpose of this study is to support the understandings of teachers about the instructional strategies of collaborative problem solving and mathematical modeling as presented in the 2015 revised mathematics curriculum. For this, tasks of the Cubes unit from six grader's and lesson plans were developed. The specific problem solving processes of students and the practices of teachers which appeared in the classes were analyzed. In the course of solving a series of problems, students have formed a mathematical model of their own, modifying and complementing models in the process of sharing solutions. In particular, it was more effective when teachers explicitly taught students how to share and discuss problem-solving. Based on these results this study is expected to suggest implications on how to foster students' problem solving ability as mathematical subject competency in elementary classrooms.

A Numerical Study on the Influence of the Horizontal Gap upon the Cavitation Behavior of a Horn Type Rudder (혼-타의 수평틈새가 캐비테이션에 미치는 영향에 관한 수치적 연구)

  • Seo, Dae-Won;Lee, Seung-Hee;Kim, Hyo-Chul;Oh, Jung-Keun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.2
    • /
    • pp.113-121
    • /
    • 2010
  • Recently, as container ships become larger and faster, rudder cavitations are more frequently observed near the gap between the horn and rudder plates of the ships to cause serious damages to the rudder surface of the ship. The authors already have suggested through a series of model experiments and numerical computations that employment of an appropriate blocking device for gap flow may retard the gap cavitation. For examples, a cam device installed near the outer edges of the vertical gap or a water-injection device combined with a pair of half-round bars installed inside the gap can considerably reduce the gap cavitation. However, it is also found that effective blocking of the flow through the vertical gap results in growth of the cavitation near the horizontal gap instead. In the present study, effectiveness of the simultaneous blocking of the flow through the horizontal and vertical gaps of a horn type rudder in minimizing the damage by gap cavitation is studied. Additional blocking disks are inserted inside the horizontal gaps on the top and bottom of the pintle block and numerical computations are carried out to confirm the combined effect of the blocking devices.

Effect of current density and contact time on membrane fouling in electrocoagulation-MBR and their kinetic studies on fouling reduction rate (전기응집-MBR 공정의 전류밀도와 접촉시간이 막 오염에 미치는 영향과 막 오염 저감 속도론적 고찰)

  • Um, Se-Eun;Chang, In-Soung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.4
    • /
    • pp.321-328
    • /
    • 2017
  • Recently EC-MBR (Elctrocoagulation - Membrane Bio Reactor) has been suggested as one of alternative processes to overcome membrane fouling problems. Most important operational parameters in the EC-MBR are known to current density and contact time. Their effect on membrane filtration performances has been reported well, however, quantitative interrelationship between both parameters not been investigated yet. The purpose of this study is to give a kinetic model suggesting the current density and the contact time required to reduce the membrane fouling. The 4 different set of current densities (2.5, 6, 12 and $24A/m^2$) and contact times (0, 2, 6 and 12 hr) were selected as operational parameters. After each electro-coagulation under the 16 different conditions, a series of membrane filtration was carried out. The membrane fouling decreased as the current density and contact time increased, Total fouling resistances under different conditions, $R_t(=R_c+R_f)$ were calculated and compared to those of the controls ($R_0$), which were calculated from the data of experiments without electro-coagulation. A kinetic approach for the fouling reduction rate ($R_t/R_0$) was carried out and the equation ${\rho}^{0.46}_it=7.0$ was obtained, which means that the product of current density and the contact time needed to reduce the fouling in certain amounts (in this study, 10% of fouling reduction) is always constant.

Efficiency, Ignorance, and Environmental Effect - long-run Relationship between Asbestos Consumption and the Incidence of Mesothelioma - (효율성과 무지, 그리고 환경피해 - 석면 사용과 악성중피종 발생의 장기관계 -)

  • Son, Donghee;Jeon, Yongil
    • Environmental and Resource Economics Review
    • /
    • v.26 no.3
    • /
    • pp.287-317
    • /
    • 2017
  • Asbestos has been actively used for various places. Since it was designated as the first grade carcinogen in the 1970s, strict regulations on using asbestos has been implemented globally. Considering long-term latent periods between asbestos exposure and environmental diseases, we analyze the time lag between asbestos consumption and the incidence of mesothelioma in Korea and estimate the long-run relationship. In addition, we conduct a comparative analysis on the effectiveness of asbestos regulations in the United Kingdom and the United States, which have accumulated long-term time-series observations. The latent period analysis indicates that the consumption of asbestos and the incidence of the disease are highly correlated in all three countries, being long-term lags of more than 30 years. Also, we find a long-run equilibrium relationship between asbestos consumption and the incidence of mesothelioma in the presence of long-term lags between the variables in all three countries. Furthermore, using a distributed lag model, asbestos consumption has statistically significant positive effects on mesothelioma with a long-term lag.

Factors Associated with Preparation for Turnover in Youth Employees: a Pooled Analysis of Data from the Youth Panel 2007-2013 (청년 취업자의 이직 준비 관련 요인: 청년패널 2007-2013 자료 분석)

  • Kim, Kyoung-Beom;Lee, Ju hyun;Noh, Jin-Won;Kwon, Young Dae
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.12
    • /
    • pp.480-491
    • /
    • 2016
  • This study aims to determine the factors associated with preparation for turnover in youth employees, using a data from the Youth Panel 2007-2013. Study population were composed by 17,037 employees and a generalized estimating equations (GEE) using panel logit model was performed. It was identified that socioeconomic(age, sex, level of education, monthly income and type of employment) and work-related factors(perception of difficulties in performing tasks compared to level of education, perception on the Job-Major match, stabilization of employment, autonomy and empowerment of jobs, peer relationship in workplace) were statistically significant variables. Based on the analysis, dissatisfaction on working environment or condition might lead to employees prepare to turnover and it is a series of activities that to improve welfare and find a suitable job for oneself.

Surface Observation of Mg-HA Coated Ti-6Al-4V Alloy by Plasma Electrolytic Oxidation

  • Yu, Ji-Min;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.198-198
    • /
    • 2016
  • An ideal orthopedic implant should provide an excellent bone-implant connection, less implant loosening and minimum adverse reactions. Commercial pure titanium (CP-Ti) and Ti alloys have been widely utilized for biomedical applications such as orthopedic and dental implants. However, being bioinert, the integration of such implant in bone was not in good condition to achieve improved osseointegraiton, there have been many efforts to modify the composition and topography of implant surface. These processes are generally classified as physical, chemical, and electrochemical methods. Plasma electrolytic oxidation (PEO) as an electrochemical route has been recently utilized to produce this kind of composite coatings. Mg ion plays a key role in bone metabolism, since it influences osteoblast and osteoclast activity. From previous studies, it has been found that Mg ions improve the bone formation on Ti alloys. PEO is a promising technology to produce porous and firmly adherent inorganic Mg containing $TiO_2$($Mg-TiO_2$ ) coatings on Ti surface, and the amount of Mg introduced into the coatings can be optimized by altering the electrolyte composition. In this study, a series of $Mg-TiO_2$ coatings are produced on Ti-6Al-4V ELI dental implant using PEO, with the substitution degree, respectively, at 0, 5, 10 and 20%. Based on the preliminary analysis of the coating structure, composition and morphology, a bone like apatite formation model is used to evaluate the in vitro biological responses at the bone-implant interface. The enhancement of the bone like apatite forming ability arises from $Mg-TiO_2$ surface, which has formed the reduction of the Mg ions. The promising results successfully demonstrate the immense potential of $Mg-TiO_2$ coatings in dental and biomaterials applications.

  • PDF

Development of An Integrated Optimal Design Program for Design of A High-Efficiency Low-Noise Regenerative Fan (재생형 송풍기의 고효율 저소음 설계를 위한 통합형 최적설계 프로그램 개발)

  • Heo, Man-Woong;Kim, Jin-Hyuk;Seo, Tae-Wan;Koo, Gyoung-Wan;Lee, Chung-Suk;Kim, Kwang-Young
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.1
    • /
    • pp.35-40
    • /
    • 2014
  • A multi-objective optimization of a regenerative fan for enhancing the aerodynamic and aeroacoustic performance was carried out using an integrated fan design system, namely, Total FAN-Regen$^{(R)}$. The Total FAN-Regen$^{(R)}$ was developed for non-specialists to carry out a series of design process, viz., computational preliminary design, three-dimensional aerodynamic and aeroacoustic analyses, and design optimization, for a regenerative fan. An aerodynamic analysis of the regenerative fan was conducted by solving three-dimensional Reynolds-averaged Navier-Stokes equations using the shear stress transport turbulence model. And, an aeroacoustic analysis of the regenerative fan was implemented in a finite/infinite element method by solving the variational formulation of Lighthill's analogy based on the results of the unsteady flow analysis. An optimum shape obtained by Total FAN-Regen$^{(R)}$ shows the enhanced efficiency and decreased sound pressure level as much as 1.5 % and 20.0 dB, respectively, compared to those of the reference design. The performance test was carried out for an optimized regenerative fan to validate the performance of the numerically predicted optimal design.