Forecasting volatility is essential to avoiding the risk caused by the uncertainties of an financial asset. Complicated financial volatility features such as ambiguity between non-stationarity and stationarity, asymmetry, long-memory, sudden fairly large values like outliers bring great challenges to volatility forecasts. In order to address such complicated features implicity, we consider machine leaning models such as LSTM (1997) and GRU (2014), which are known to be suitable for existing time series forecasting. However, there are the problems of vanishing gradients, of enormous amount of computation, and of a huge memory. To solve these problems, a causal temporal convolutional network (TCN) model, an advanced form of 1D CNN, is also applied. It is confirmed that the overall forecasting power of TCN model is higher than that of the RNN models in forecasting VIX, VXD, and VXN, the daily volatility indices of S&P 500, DJIA, Nasdaq, respectively.
Recently, in the field of Speech Emotion Recognition (SER), many studies have been conducted to improve accuracy using voice features and modeling. In addition to modeling studies to improve the accuracy of existing voice emotion recognition, various studies using voice features are being conducted. This paper, voice files are separated by time interval in a time series method, focusing on the fact that voice emotions are related to time flow. After voice file separation, we propose a model for classifying emotions of speech data by extracting speech features Mel, Chroma, zero-crossing rate (ZCR), root mean square (RMS), and mel-frequency cepstrum coefficients (MFCC) and applying them to a recurrent neural network model used for sequential data processing. As proposed method, voice features were extracted from all files using 'librosa' library and applied to neural network models. The experimental method compared and analyzed the performance of models of recurrent neural network (RNN), long short-term memory (LSTM) and gated recurrent unit (GRU) using the Interactive emotional dyadic motion capture Interactive Emotional Dyadic Motion Capture (IEMOCAP) english dataset.
Purpose - The purpose of this study is to analyze the market power of the Korea Container Shipping Market (Intra Asia, Korea-Europe, and Korea-U.S.) to verify the existence of collusion empirically, and to answer whether the joint actions of liner market participants in Korea have formed market dominance for each route. Precisely, it will be verified through the Lerner index as to whether the regional market of Asia is a monopoly, oligopoly, or perfect competition. Design/methodology - This study used a Lerner index adjusted with elasticity presented in the New Imperial Organization (NEIO) studies. NEIO refers to a series of empirical studies that estimate parameters to judge market power from industrial data. This study uses B-L empirical models by Bresnahan (1982) and Lau (1982). In addition, NEIO research data statistically contain self-regression and stability problems as price and time series data. A dynamic model following Steen and Salvanes' Error Correction Model was used to solve this problem. Findings - The empirical results are as follows. First, λ, representing market power, is nearly zero in all three markets. Second, the Korean shipping market shows low demand elasticity on average. Nevertheless, the markup is low, a characteristic that is difficult to see in other industries. Third, the Korean shipping market generally remains close to perfect competition from 2014 to 2022, but extreme market power appears in a specific period, such as COVID-19. Fourth, there was no market power in the Intra Asia market from 2008 to 2014. Originality/value - Doubts about perfect competition in the liner market continued, but there were few empirical cases. This paper confirmed that the Korea liner market is a perfect competition market. This paper is the first to implement dynamics using ECM and recursive regression to demonstrate market power in the Korean liner market by dividing the shipping market into Deep Sea and Intra Asia separately. It is also the first to prove the most controversial problems in the current shipping industry numerically and academically.
Variations in the brightness of asteroids are caused by their spins, irregular shapes and companions. Thus, in principle, the spin state and shape model of a single object or, a combined model of spins, shapes and mutual orbit of a multiple components can be constructed from the analysis of light curves obtained from the time-series photometry. Using ground- and space-based facilities, a number of time-series photometric observations of asteroids have been conducted to find the possible causes of their light variations. Nonetheless, only about 2% of the known asteroids have been confirmed for their rotation periods. Therefore, a follow-on systematic photometric survey of asteroids is essential. We started an asteroid light curve survey for this purpose using Korea Microlensing Telescope Network (KMTNet) during 199 nights between the second half of 2019 and the first half of 2020. We monitored within a 2° × 14° region of the sky per each night with 25 min cadences. In order to observe as many asteroids as possible with a single exposure, we mostly focus on the ecliptic plane. In our survey, 25,925 asteroids were observed and about 8,000 of them were confirmed for their rotation periods. In addition, using KMTNet's 24-hour continuous monitoring, we collected many composite light curves of slow rotating asteroids that were rarely obtained with previous observations. In this presentation, we will introduce the typical light curves of asteroids obtained from our survey and present a statistical analysis of spin states and shapes of the asteroids from this study.
International conference on construction engineering and project management
/
2020.12a
/
pp.63-74
/
2020
The assembly of modular construction requires a series of thoroughly-considered decisions for crane lifting including the crane model selection, crane location planning, and lift path planning. Traditionally, this decision-making process is empirical and time-consuming, requiring significant human inputs. Recently, research efforts have been dedicated to improving lift planning practices by leveraging cutting-edge technologies such as automated data acquisition, Building Information Modelling (BIM) and computational algorithms. It has been demonstrated that these technologies have advanced lift planning to some degree. However, the advancements tend to be fragmented and isolated. There are two hurdles prevented a systematic improvement of lift planning practices. First, the lack of formalized lift planning workflow, outlining the procedure and necessary information. Secondly, there is also an absence of a shared information environment, enabling storages, updates and the distribution of information to stakeholders in a timely manner. Thus, this paper aims to overcome the hurdles. The study starts with a literature review in combination with document analysis, enabling the initial workflow and information flow. These were contextualised through a series of interviews with Australian practitioners in the crane-related industry, and systematically analysed and schematically validated through an expert panel. Findings included formalized workflow and corresponding information exchanges in a traditional lift planning practice via a Business Process Model and Notation (BPMN). The traditional practice is thus reviewed to identify opportunities for further enhancements. Finally, a BIM-based lift planning workflow is proposed, which integrates the scattered technologies (e.g. BIM and computational algorithms) with the aim of supporting lift planning automation. The resulting framework is setting out procedures that need to be developed and the potential obstacles towards automated lift planning are identified.
Journal of the Korea Society of Computer and Information
/
v.28
no.11
/
pp.13-20
/
2023
In this paper, we propose a water temperature prediction method using feature extraction and reconstructed data based on LSTM-Autoencoder. We used multivariate time series data such as sea surface water temperature in the Naksan area of the East Sea where the cold water zone phenomenon occurred, and wind direction and wind speed that affect water temperature. Using the LSTM-Autoencoder model, we used three types of data: feature data extracted through dimensionality reduction of the original data combined with multivariate data of the original data, reconstructed data, and original data. The three types of data were trained by the LSTM model to predict sea surface water temperature and evaluated the accuracy. As a result, the sea surface water temperature prediction accuracy using feature extraction of LSTM-Autoencoder confirmed the best performance with MAE 0.3652, RMSE 0.5604, MAPE 3.309%. The result of this study are expected to be able to prevent damage from natural disasters by improving the prediction accuracy of sea surface temperature changes rapidly such as the cold water zone.
There is a lot of research on using a combination of graph neural networks and recurrent neural networks as a way to account for both temporal and spatial dependencies. In particular, graph neural networks are an emerging area of research. Seoul's bicycle rental service (aka Daereungi) has rental stations all over the city of Seoul, and the rental information at each station is a time series that is faithfully recorded. The rental information of each rental station has temporal characteristics that show periodicity over time, and regional characteristics are also thought to have important effects on the rental status. Regional correlations can be well understood using graph neural networks. In this study, we reconstructed the time series data of Seoul's bicycle rental service into a graph and developed a rental prediction model that combines a graph neural network and a recurrent neural network. We considered temporal characteristics such as periodicity over time, regional characteristics, and the degree importance of each rental station.
In this paper, we derive the Partial Differential Bond Price Equation (PDBPE) by using Ito's Lemma to determine the pricing of bond on term-structure of interest rate (TSIR) model with jump. From PDBPE, the Maclaurin series (MS) and the moment-generating function (MGF) for the exponential function are used to obtain a numerical solution (NS) of the bond prices. And an algorithm for determining bond prices using Monte Carlo Simulation (MCS) techniques is proposed, and the pricing of bond is determined through the simulation process. Comparing the results of the implementation of the above two pricing methods, the relative error (RE) is obtained, which means the ratio of NS and MCS. From the results, we can confirm that the RE is less than around 2.2%, which means that the pricing of bond can be predicted very accurately using the proposed algorithms as well as numerical analysis. Moreover, it was confirmed that the bond price obtained using the MS has a relatively smaller error than the pricing of bond obtained by using the MGF.
Recent expansion in cloud service usage has heightened the importance of cloud security. The purpose of this study is to analyze current research trends in the field of cloud security and to derive implications. To this end, R&D project data provided by the National Science and Technology Knowledge Information Service (NTIS) from 2010 to 2023 was utilized to analyze trends in cloud security research. Fifteen core topics in cloud security research were identified using LDA topic modeling and ARIMA time series analysis. Key areas identified in the research include AI-powered security technologies, privacy and data security, and solving security issues in IoT environments. This highlights the need for research to address security threats that may arise due to the proliferation of cloud technologies and the digital transformation of infrastructure. Based on the derived topics, the field of cloud security was divided into four categories to define a technology reference model, which was improved through expert interviews. This study is expected to guide the future direction of cloud security development and provide important guidelines for future research and investment in academia and industry.
Journal of the Korea institute for structural maintenance and inspection
/
v.12
no.3
/
pp.93-100
/
2008
The use of fiber reinforced polymer (FRP) composites is significantly growing in construction and infrastructure applications where durability under harsh environmental conditions is of great concern. In order to examine the applicability of FRP rebar as a reinforcement in flexural member, flexural tests were conducted. 12 beams with different FRP materials such as CFRP, GFRP and Hybrid FRP and reinforcement ratio were tested and analyzed in terms of failure mode, moment-deflection, flexural capacity, ductility index and sectional strain distribution. The test results were also compared with the theoretical model represented in ACI 440.1R06. Test results indicate that the flexural capacity of the beams reinforced by FRP bars can be accurately predicted using the ultimate design theory. They also show that the current ACI model for computing the deflection overestimates the actual deflection of GFRP series and underestimates the deflection of CFRP series.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.