• Title/Summary/Keyword: series model

Search Result 5,383, Processing Time 0.041 seconds

A study on parsimonious periodic autoregressive model (모수 절약 주기적 자기회귀 모형에 관한 연구)

  • Lee, Jiho;Seong, Byeongchan
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.1
    • /
    • pp.133-144
    • /
    • 2016
  • This paper proposes a parsimonious periodic autoregressive (PAR) model. The proposed model performance is evaluated through an analysis of Korean unemployment rate series that is compared with existing models. We exploit some common features among each seasonality and confirm it by LR test for the parsimonious PAR model in order to impose a parsimonious structure on the PAR model. We observe that the PAR model tends to be superior to existing seasonal time series models in mid- and long-term forecasts. The proposed parsimonious model significantly improves forecasting performance.

Development of a Transient Groundwater Flow Model in Pyoseon Watershed of Jeju Island: Use of a Convolution Method (컨벌루션 기법을 이용한 제주도 표선유역 부정류 지하수 흐름 모델 개발)

  • Kim, Seung-Gu;Koo, Min-Ho;Chung, Il-Moon
    • Journal of Environmental Science International
    • /
    • v.24 no.4
    • /
    • pp.481-494
    • /
    • 2015
  • Groundwater level hydrographs from observation wells in Jeju island clearly illustrate distinctive features of recharge showing the time-delaying and dispersive process, mainly affected by the thickness and hydrogeologic properties of the unsaturated zone. Most groundwater flow models have limitations on delineating temporal variation of recharge, although it is a major component of the groundwater flow system. Recently, a convolution model was suggested as a mathematical technique to generate time series of recharge that incorporated the time-delaying and dispersive process. A groundwater flow model was developed to simulate transient groundwater level fluctuations in Pyoseon area of Jeju island. The model used the convolution technique to simulate temporal variations of groundwater levels. By making a series of trial-and-error adjustments, transient model calibration was conducted for various input parameters of both the groundwater flow model and the convolution model. The calibrated model could simulate water level fluctuations closely coinciding with measurements from 8 observation wells in the model area. Consequently, it is expected that, in transient groundwater flow models, the convolution technique can be effectively used to generate a time series of recharge.

An Analysis of Categorical Time Series Driven by Clipping GARCH Processes (연속형-GARCH 시계열의 범주형화(Clipping)를 통한 분석)

  • Choi, M.S.;Baek, J.S.;Hwan, S.Y.
    • The Korean Journal of Applied Statistics
    • /
    • v.23 no.4
    • /
    • pp.683-692
    • /
    • 2010
  • This short article is concerned with a categorical time series obtained after clipping a heteroscedastic GARCH process. Estimation methods are discussed for the model parameters appearing both in the original process and in the resulting binary time series from a clipping (cf. Zhen and Basawa, 2009). Assuming AR-GARCH model for heteroscedastic time series, three data sets from Korean stock market are analyzed and illustrated with applications to calculating certain probabilities associated with the AR-GARCH process.

Vegetation Classification from Time Series NOAA/AVHRR Data

  • Yasuoka, Yoshifumi;Nakagawa, Ai;Kokubu, Keiko;Pahari, Krishna;Sugita, Mikio;Tamura, Masayuki
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.429-432
    • /
    • 1999
  • Vegetation cover classification is examined based on a time series NOAA/AVHRR data. Time series data analysis methods including Fourier transform, Auto-Regressive (AR) model and temporal signature similarity matching are developed to extract phenological features of vegetation from a time series NDVI data from NOAA/AVHRR and to classify vegetation types. In the Fourier transform method, typical three spectral components expressing the phenological features of vegetation are selected for classification, and also in the AR model method AR coefficients are selected. In the temporal signature similarity matching method a new index evaluating the similarity of temporal pattern of the NDVI is introduced for classification.

  • PDF

A Series Arc Fault Detection Strategy for Single-Phase Boost PFC Rectifiers

  • Cho, Younghoon;Lim, Jongung;Seo, Hyunuk;Bang, Sun-Bae;Choe, Gyu-Ha
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1664-1672
    • /
    • 2015
  • This paper proposes a series arc fault detection algorithm which incorporates peak voltage and harmonic current detectors for single-phase boost power factor correction (PFC) rectifiers. The series arc fault model is also proposed to analyze the phenomenon of the arc fault and detection algorithm. For arc detection, the virtual dq transformation is utilized to detect the peak input voltage. In addition, multiple combinations of low- and high-pass filters are applied to extract the specific harmonic components which show the characteristics of the series arc fault conditions. The proposed model and the arc detection method are experimentally verified through a boost PFC rectifier prototype operating under the grid-tied condition with an artificial arc generator manufactured under the guidelines for the Underwriters Laboratories (UL) 1699 standard.

Kernel-Based Fuzzy Regression Machine For Predicting Turbulent Flows

  • Hong, Dug-Hun;Hwang, Chang-Ha
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2004.04a
    • /
    • pp.91-101
    • /
    • 2004
  • The turbulent flow is of fundamental interest because the conservation equations for thermodynamics, mass and momentum are linked together. This turbulent flow consists of some coherent time- and space-organized vortical structures. Research has already shown that some dynamic systems and experimental models still cannot provide a good nonlinear analysis of turbulent time series. In the real turbulent flow, very complicated nonlinear behaviors, which are affected by many vague factors are present. In this paper, a kernel-based machine for fuzzy nonlinear regression analysis is proposed to predict the nonlinear time series of turbulent flows. In order to show the practicality and usefulness of this model, we present an example of predicting the near-wall turbulence time series as a verifiable model and compare with fuzzy piecewise regression. The results of practical applications show that the proposed method is appropriate and appears to be useful in nonlinear analysis and in fuzzy environments to predict the turbulence time series.

  • PDF

Transfer Function Model Forecasting of Sea Surface Temperature at Yeosu in Korean Coastal Waters (전이함수모형에 의한 여수연안 표면수온 예측)

  • Seong, Ki-Tack;Choi, Yang-Ho;Koo, Jun-Ho;Lee, Mi-Jin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.5
    • /
    • pp.526-534
    • /
    • 2014
  • In this study, single-input transfer function model is applied to forecast monthly mean sea surface temperature(SST) in 2010 at Yeosu in Korean coastal waters. As input series, monthly mean air temperature series for ten years(2000-2009) at Yeosu in Korea is used, and Monthly mean SST at Yeosu station in Korean coastal waters is used as output series(the same period of input). To build transfer function model, first, input time series is prewhitened, and then cross-correlation functions between prewhitened input and output series are determined. The cross-correlation functions have just two significant values at time lag at 0 and 1. The lag between input and output series, the order of denominator and the order of numerator of transfer function, (b, r, s) are identified as (0, 1, 0). The selected transfer function model shows that there does not exist the lag between monthly mean air temperature and monthly mean SST, and that transfer function has a first-order autoregressive component for monthly mean SST, and that noise model was identified as $ARIMA(1,0,1)(2,0,0)_{12}$. The forecasted values by the selected transfer function model are generally $0.3-1.3^{\circ}C$ higher than actual SST in 2010 and have 6.4 % mean absolute percentage error(MAPE). The error is 2 % lower than MAPE by ARIMA model. This implies that transfer function model could be more available than ARIMA model in terms of forecasting performance of SST.

Low Flow Frequency Analysis of Steamflows Simulated from the Stochastically Generated Daily Rainfal Series (일 강우량의 모의 발생을 통한 갈수유량 계열의 산정 및 빈도분석)

  • Kim, Byeong-Sik;Gang, Gyeong-Seok;Seo, Byeong-Ha
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.3
    • /
    • pp.265-279
    • /
    • 1999
  • In this study, one of the techniques on the extension of low flow series has been developed, in which the daily streamflows were simulated by the Tank model with the input of extended daily rainfall series which were stochastically generated by the Markov chain model. The annual lowest flow serried for each of the given durations were formulated form the simulated daily streamflow sequences. The frequency of the estimated annual lowest flow series was analyzed. The distribution types to be used for the frequency analysis were two-parameter and three-parameter log-normal distribution, two-parameter and three-parameter Gamma distribution, three-parameter log-Gamma distribution, Gumbel distribution, and Weibull distribution, of which parameters were estimated by the moment method and the maximum likelihood method. The goodness-of-fit test for probability distribution is evaluated by the Kolmogorov-Sminrov test. The fitted distribution function for each duration series is applied to frequency analysis for developing duration-low flow-frequency curves at Yongdam Dam station. It was shown that the purposed technique in this study is available to generate the daily streamflow series with fair accuracy and useful to determine the probabilistic low flow in the watersheds having the poor historic records of low flow series.

  • PDF

Numerical Analysis of Si-based Photovoltaic Modules with Different Interconnection Methods

  • Park, Chihong;Yoon, Nari;Min, Yong-Ki;Ko, Jae-Woo;Lim, Jong-Rok;Jang, Dong-Sik;Ahn, Jae-Hyun;Ahn, Hyungkeun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.2
    • /
    • pp.103-111
    • /
    • 2014
  • This paper investigates the output powers of PV modules by predicting three unknown parameters: reverse saturation current, and series and shunt resistances. A theoretical model using the non-uniform physical parameters of solar cells, including the temperature coefficients, voltage, current, series and shunt resistances, is proposed to obtain the I-V characteristics of PV modules. The solar irradiation effect is included in the model to improve the accuracy of the output power. Analytical and Newton methods are implemented in MATLAB to calculate a module output. Experimental data of the non-uniform solar cells for both serial and parallel connections are used to extend the implementation of the model based on the I-V equation of the equivalent circuit of the cells and to extend the application of the model to m by n modules configuration. Moreover, the theoretical model incorporates, for the first time, the variations of series and shunt resistances, reverse saturation current and irradiation for easy implementation in real power generation. Finally, this model can be useful in predicting the degradation of a PV system because of evaluating the variations of series and shunt resistances, which are critical in the reliability analysis of PV power generation.

Time-Series Data Prediction using Hidden Markov Model and Similarity Search for CRM (CRM을 위한 은닉 마코프 모델과 유사도 검색을 사용한 시계열 데이터 예측)

  • Cho, Young-Hee;Jeon, Jin-Ho;Lee, Gye-Sung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.5
    • /
    • pp.19-28
    • /
    • 2009
  • Prediction problem of the time-series data has been a research issue for a long time among many researchers and a number of methods have been proposed in the literatures. In this paper, a method is proposed that similarities among time-series data are examined by use of Hidden Markov Model and Likelihood and future direction of the data movement is determined. Query sequence is modeled by Hidden Markov Modeling and then the model is examined over the pre-recorded time-series to find the subsequence which has the greatest similarity between the model and the extracted subsequence. The similarity is evaluated by likelihood. When the best subsequence is chosen, the next portion of the subsequence is used to predict the next phase of the data movement. A number of experiments with different parameters have been conducted to confirm the validity of the method. We used KOSPI to verify suggested method.