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Abstract

The turbulent flow is of fundamental interest because the conservation equations for
thermodynamics, mass and momentum are linked together. This turbulent flow consists of
some coherent time- and space-organized vortical structures. Research has already shown
that some dynamic systems and experimental models still cannot provide a good nonlinear
analysis of turbulent time series. In the real turbulent flow, very complicated nonlinear
behaviors, which are affected by many vague factors are present. In this paper, a
kemel-based machine for fuzzy nonlinear regression analysis is proposed to predict the
nonlinear time series of turbulent flows. In order to show the practicality and usefulness of
this model, we present an example of predicting the near-wall turbulence time series as a
verifiable model and compare with fuzzy piecewise regression. The results of practical
applications show that the proposed method is appropriate and appears to be useful in
nonlinear analysis and in fuzzy environments to predict the turbulence time series.

Keywords : Fuzzy tegression, near wall turbulent, necessity, possibility, time series,
kemel-based machine. '

1. Introduction to Near-Wall Turbulence

Most turbulent flow research has focused on understanding the characteristics of turbulence
and using semi-empirical theories to fit the experimental data, as evidenced by the volumes of
publications involving experimental data, mathematical analysis, and computational modeling.
These methods can be used to estimate the characteristics by using statistical analysis and
fitting the parameters from the experimental data.

In near-wall regions, a large production occurs and the presence of nonlinearity becomes
significant. Many studies have concentrated on the mechanism of near-wall turbulence and the
coherent vortical structure of bursting. Aubry et al.(1988) employed a dynamical systems
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approach to study the behavior of streamwise vortices in the near-wall region of turbulent
boundary layers. Hamilton et al.(1995) used direct numerical simulations to study the
regeneration dynamics of turbulent structure found in the near-wall region. These studies can
identify many main features of the near-wall dynamics and provide important information
conceming the physical basis of turbulent generation mechanisms.

One important feature in the near-wall turbulence is that these instantaneous characteristics
of the velocity, intensity and location (relative distance) are all dependent on time series and
are interrelated. Time series analysis with these correlations then becomes an important clue
about how to approach the study of the turbulence. However, in this field only a few papers
that appear in publications about turbulent flow depend on time-series. Porporato and
Ridolfi(1997) applied the nonlinear time series analysis to a near wall turbulence signal in a
hydraulically smooth pipe. Tseng et al.(2001) used fuzzy piecewise regression analysis to the
nonlinear time series of turbulent flows. In practical circumstances, it is difficult to grasp rules
for predicting the nonlinear turbulent behavior and to forecast the velocity and intensities of the
turbulent flow at different times. In this paper we propose a kernel-based machine for fuzzy
nonlinear regression analysis to predict the nonlinear time series of near-wall turbulent flows.

2. Some Results in Interval Regression Analysis

Tanaka et al.(1982) introduced a linear programming(LP) based regression method using a
linear model with symmetrical triangular fuzzy parameters and then defined the possibility and
necessity regression analyses. However, two weaknesses involving the fuzzy regression model
have arisen. First, in possibility analysis, it turned out that Tanaka‘s methodologies were
extremely sensitive to outliers. Furthermore, the fuzzy predictive interval tends to become
fuzzier as more data are collected and has no operational definition or interpretation. Second, in
necessity analysis, the necessity area would not be obtained owing to the large variation in
data. Tanaka and Lee(1998) proposed quadratic programming(QP) approach to interval
regression analysis. In this section, we illustrate how to get solutions for interval regression
models using QP approach proposed by Tanaka and Lee(1998).

Suppose that we are given training data {(x,y,), i=1,-,n}CX xR, where X
denotes the space of the input patterns. we begin by describing the case of interval linear
regression functions Y(x), taking the form

Y(x) = AO + Alxl + -+ Amx,,, = Atx, (1)

where x=(1,x,,x,)' is a real input vector, A= (A4,,A,,,A,)" is an interval
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coefficient vector, and Y(x) is the corresponding estimated interval. An interval coefficient
A; is denoted as A,=(a,,c;) where g; is a center and ¢; is a radius. By interval
arithmetic, the regression model (1) can be expressed as

Y(x;) = (ay, cp)+ (a1, c)xin+ -+ (@p, )% im
=(ay+axqt -+ auXimcot+clx gl + -+ cplximl) )

= (a'xz;, c'lz ),
where @ = (a5, a1, -, an)’, ¢=(cp, ¢, , ¢, and |x;|=(1,lxal, -, |l
2.1 Integrating Central Tendency and Possibilistic Property

We now illustrate the formulation integrating central tendency and possibilistic property in
Tanaka and Lee(1998). We consider a new objective function which reflects both properties of
least squares and possibilistic approaches

T=k Zoi—a'z)*+ b 2 clxillxil'c €)

where i:‘lx,-llx,-l’ is a symmetric positive definite matrix and % and k, are weight

coefficients. Interval regression analysis using this new objective function (3) is to determine
the interval coefficients A;=(a;, ¢;),i=0,1, -, m by solving the following QP problem:

mina_c ]=k1 g‘(y,-—atxi)2+k2§ct|x,-|lx,~|tc (4)
subject to

a'z;+ c'lxlzy;, a'x;— x| <y, i=1,,n

20, :=0,1,-,m

The weight coefficients %, and k%, in (4) have an important role in formulating fuzzy

regression models. These coefficients can be assigned by considering a tardeoff between two
terms in (4).

2.2 Unifying the Possibility and Necessity Models

For a data set with crisp inputs and interval outputs, we can consider two interval
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regression models, ie., the possibility and necessity models. In this section, we review the
unified QP approach to obtain the possibility and necessity models simultaneously. In this
unified approach, we assume for simplicity that the center coefficients of the possibility
regression model and necessity regression model are same.

Suppose that we are given training data {(x, Y;), i=1,--,n}, where
x;=(,x4,,xm) is the jth input vector, Y,=(y; ;) is the comesponding interval
output that consists of a center y; and a radius e;. For this data set, the possibility and
necessity estimation models are denoted as

Y (x)= A+ Axg+ - +A%% 0, i=1,n
Y.(x,~) = A¢0+A¢1xa + e +A¥mxz'm: i=1,,n

where the interval coefficients A% and A,; are denoted as A%=(q, ¢} and
A.;=(a.;, c.;), rtespectively. The estimated interval Y*(x;) by the possibility model
always includes the observed interval Y;, whereas the estimated interval Y,(x;) by the
necessity model should be included in the observed interval Y,. In fact, we can denote the

interval coefficients A% and A,; as

A = (a;, ¢;+dy)
A, = (a;,c)

which satisfies the condition A.;c A%, i=0,1,--,m since ¢; and d; are assumed to be
nonnegative. Therefore, by interval arithmetic the possibility model Y*(x;) and the necessity

model Y,.(x;) can be written as

Y(x) = (a'x;, c'|x;| + d'|x;])

Yx) = (a'x;, c'|x;).

The two objective functions in the possibility and the necessity models are assumed as
follows:

min Jp = 23 (c'lx;|+ d'lx,]): Possibility model
max Jy = z2:1c’lx,~|: Necessity model

The objective function of the unified model can be obtained by the combination of these
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two objective functions. The combination of two functions yields the following:
min Jp—Jy = g dtlxil-

Then, the objective function in the umified approach by QP can be assumed as the
following quadratic function:

J= Z(@1x? = a( Kixillxl)d

Therefore, interval regression analysis is to determine the interval coefficients A* and

A.;, 7=0,1,-,m that minimize the above objective function J and satisfy inclusion
relations Y,(x;) S Y; S Y'(x;). This problem can be described as the following QP
problem:

min, . 4 d'( gl |x,-||x,-|t)d+ £(a‘a+ c'c)

subject to

a'x;+ c'lx;l+ d'lx;|2y;+ e, a'x;— ¢'lx;| — d'lx;|<y,— e
a'x; + c'lxilSyi+ e, a'x;— c'lx;| 2y, —e;, i=1,2,,n
c;20,d;20, i=0,1,-

where ¢ is a significantly small positive number, and so leads the influence of
£(a‘a+ c'c) to be negligible.

3. Kernel-Based Machine for Interval Regression

In this section, we propose a new method to evaluate interval linear and nonlinear
regression models combining the possibility estimation formulation integrating the property of
central tendency with the principle of support vector machine(SVM) of Vapnik(1995). We first
need to look at how to get solutions for interval linear regression models by implementing
quadratic loss SVM approach. We follow the way of constructing objective function in
quadratic loss SVM regression. Then, the objective function can be assumed as the following
quadratic function:

min, .o y(lal’+lel®+1d1)+ §(Ha+ JEh+ah) O
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subject to

d'lx;| <&y
yi—a'x; <&y, a'x;— i< &y
a'x;+ clxil+ d'lx;l 2y + e, a'x;— c'lx;| — d'|x | <y, — ¢

a'z;+ c'lx|<yit e, a'zi— clxil 2y, — e, i=1,2,,n

The weight coefficient C>0 determines not only the trade-off between g(y,-— a'x))?

and gz‘C'lxillxil’c, but also the trade-off between the flamess of Y(x). Although it is

possible to use two weight coefficients like Tanaka and Lee(1998), we use one weight
coefficient. Here, &,; represents spreads of the estimated outputs, and &,;, £;; are slack

variables representing upper and lower constraints on the outputs of the model. Hence, we can
construct a Lagrange function as follows:

L=50al’+1el)+ §(5&+ 5 ehi+ D)
- g\ali(éli_ d'lx;l)
- glaz,(ézi—yﬁ a'x;) - ZlaEi(éz,-- a'x;+y;) ©)
— gaﬁ(a'x,--l- clxd+dx|—yi—e;) — Zlagi(yi—ei— a'x+ c'lx;)+ d'lx;])
- §a4i(yi+e,-— a'x+c'ixgl) — gazi(a'xi— c’lxil—yi+e)

Here, a,;, a5, a3;, as;, @3, a4, a); are Lagrange multipliers. Xt follows from' the
saddle point condition that the partial derivatives of L with respect to the primal variables
(a, c, d, &);, &, £3;) have to vanish for optimality.

—%—I;— =0—> g= Z‘(aZi— az)x;+ Z‘(a&-—— ay)x;— g(a“_ al)x; 0
L0 o= len+aidlnl— Blau+aidlz ®
-%%=0—> = — gali|x,~|+ g\(al}i-i_a;i)lxil (9)

AL _ g, e . - L1
aSIi _0 Sl:_ Cali (10)
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oL _ o, s _ 1
e TV 7w = Cou v

Substituting (7)-(11) into (6) yields the dual optimization problem.
maximize{— % ( igl(azi—dsi)(a’z,'—a’g,')x;xj
+ igl(a’si—agi)(aaj“ag,')xij+ i;1(04i_02i)(a4j—02;’)xfx,' (12)
+2 ’.”2:1(02:'_a’;z‘)(aiij_a’;j)x;xj_2 mﬁ::l(a’zi—a’%z‘)(du—a’zl')xf'xj
-2 igl(asi—aii)(au—ab)xfx;+ ;‘.__l(asﬁ 23:) (a3 + e3) | x;1'| x5
+ 3 (et i) (et aiplzillnl - 2 3 (ay+ ad) (ay+ ) 215
+ Benaylnlinl =2 3 alay+ i)zl 5)
- 5= ;aﬁ— Te g(a§i+a§?
+ g(GZi—agi)Yi+ g‘(aBi_a;i)yi_ g‘(ﬂ'u_a’zz')%’
+ g(a3i+a§,~)e,~— Z‘(a4,-+azi)e,~}

subject to
@i, @ri, @320, k=23 4.

Solving (12) with above constraints determines the Lagrange multipliers, a,;, @, a}:-
We take c¢= max{c, 0} and d= max{d, 0} since ¢; and d; should be nonnegative.
Here, 0 represents the corresponding zero vector. We use the same ¢ and 4 to avoid the

abuse of notations. Therefore, since ¢’|x|>0and d‘|x| =0, the interval linear regression
function is given by (7), (8) and (9) as follows:

Y'(x) = (a'x, c’lx|+ d'|xl) (13)
Y.(x) = (a'x, c'lx]) (14

Next, we will consider nonlinear interval regression model. In contrast to linear interval
regression, there have been no articles on nonlinear interval regression. In this paper we treat
nonlinear interval regression, without assuming the underlying model function. In the case



98 Dug Hun Hong, Changha Hwang

where a linear regression function is inappropriate quadratic loss SVM makes algorithm
nonlinear. This could be achieved by simply preprocessing input pattemns x; by a map
@: R” > E into some feature space E and then applying quadratic loss SVM regression
algorithm. This is an astonishingly straightforward way.

First notice that the only way in which the data appears in (12) is in the form of inner
products x{x;, |x;|’|x;|. The algorithm would only depend on the data through dot
products in E, ie. on functions of the form K(x;, x;))=.0(x,) 0(x)),
K(x:l,1x;)=0( x,;1) 0( x;|). The well used kemels for regression problem are given
below.

R
K(z,y)=(x'y+1), Kz, 9)=e¢ ¥

Here, p and o* are kemel parameters. In final, the nonlinear interval regression solution
is given by

maximize[— —%— ( 1,,’21(02,‘—0’5;‘)(42;_a’;i)K(xz', x;)

+ izl(agi—a§,)(a;;,~—a§,~)K(x,-,x,-) + igl(au—azi)(a4;—a,}j)K(xi, x;) 15)

+2 i;{(azi—a&)(agj—a;},—)K(x,-, x;) —2 igl(az,-—aE,-)(aM—aZ,)K(x,», x;)

-2 3 (a5 i) (@y—ai)K(xax) + 3 Gyt i) (ay+ a3) Kzl 5,0)

+ igl(a4,~+al,~)(a4;+a,§;)K(l xi,1x;0) =2 i;l(agj+a§,-)(a4,-+a2,~)K(I xil,1x;0)

+ i'lglaliale(' xllx;l)—2 mﬁ::lal,'(a;,,'i- a3) K(| x,-l,lle))

- 55 neli— 5w 2edita)

+ g:l(ag,-—crE,-)y,-+ Z‘(aai—asi)yi— g(au—a;)yi

+ gl(aiii"'a;i)ei— g\(a’di'*'a‘;i)ei}
subject to

@1, @i, @20, £=2,34.

Solving (15) with the above constraints determines the Lagrange multipliers, «;,
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@i, ;- Therefore, the interval nonlinear regression function is given as follows:

Y(x) = (B[ (am et +(as—ai)—(@u—aid Kz, 2),
ma {0, 23 [(at a3) — @yt aid) KUz, |21+ 16
max (0, 35 [~ a1+ (a5t a3) 1Kz, 151)))

Y(x) = ( 2 [ eid+ (as—a3) — (2= aid ] Kixs 2),

max 0, 24 [ (@5t a3)~(aut i) JK(1x121)) an

4. Nonlinear Near-Wall Turbulence Time Series

In this section, in order to show the practicality and usefulness of the method described in
the previous section, a case for predicting the near-wall turbulence timeseries is taken as a
validated model. Porporato and Ridolfi(1997) discovered a phenomenon which the near-wall
turbulence time-serial data is nonlinear from the experiments, measured using a Laser Doppler
Anemometer. They applied a nonlinear chaotic prediction to a high-dimension system and
produced forecasts of rapidly decreasing quality over time, with no consequences for practical
applications. They use a trace of the direct prediction with forecast interval = 5x3x 4¢=160.40
ms: the correspondence with reality is optimum and maintained during the strong and extended
velocity gradients. Although the forecast is worse globally and the rapid oscillations largely
escape the method, the large-scale behavior is still well captured, and even the strong velocity
gradients are forecasted with an accuracy equal to that of the small-scale motions by their
research. However, when forecast interval is slightly above the traditional Kolmogorov
time-scale, the forecast is rather poor.

Therefore, we try to use a kemel-based machine for fuzzy nonlinear regression analysis to
predict the nonlinear time series of turbulent flows, and compare it with fuzzy piecewise
regression of Tseng et al.(2001). The testing data used here as an example were taken
subjectively from Porporato and Ridolfi(1997). We divided the time serial data into 10
segments from the experimental results and use 11 samples of time series to test this method.
Very few data is used in order to demonstrate the practicality of this model. The time series
x, ranges from O to 10. This data are given in Table 1.
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Table 1. The comparison of observed output with predicted output

Sample | Observed Qutput Predicted Output (mys)

(time, s) | (raw data, m/s) | Kemel Machine Possibility(3) Necessity(5)
0 {0.0248, 0.0260] | [0.0244, 0.0260] [[0.02360, 0.02662] | [0.02480, 0.02530]
1 [0.0203, 0.0210} | [0.0203, 0.0212] |[0.02012, 0.02322]|[0.02050, 0.02100]
2 [0.0185, 0.0208] | [0.0181, 0.0208] |[0.01762, 0.02080] | {0.01850, 0.01900]
3 [0.0161, 0.0173] | [0.0161, 0.0174] |[0.01610, 0.01936] | [0.01645, 0.01695]
4 [0.0167, 0.0189] | [0.0162, 0.0188] |[0.01556, 0.01890]|[0.01670, 0.01720]
5 {0.0160, 0.0165] | {0.0160, 0.0166] |[0.01600, 0.01942] | [0.01600, 0.01650]
6 [0.0235, 0.0270] | [0.0231, 0.0270] }[0.02350, 0.02700] | [0.02647, 0.02697]
7 [0.0270, 0.0282] | {0.0269, 0.0283] |([0.02462, 0.02820] | [0.02749, 0.02799]
8 [0.0227, 0.0245] | [0.0224, 0.0246] |} [0.02226, 0.02592] | [0.02390, 0.02440]
9 [0.0225, 0.0238] | [0.0223, 0.0240} |[0.02088, 0.02462] | [0.02262, 0.02312]
10 [0.0232, 0.0243] | [0.0229, 0.0243] | [0.02048, 0.02430]] [0.02364, 0.02414]

003
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Figure 1. Fuzzy nonlinear regression model

Figure 1 illustrates the results for the proposed nonlinear model. Here, we use Gaussian
kemnel for fuzzy nonlinear regression model. We have used leave-one-out(LOO) cross-validation
based on the sum of squares in the optimization problem (3) to determine an optimal
combination of C and ¢, which are C=30 and ¢=1.0. The solid curve explains the fitted
regression curve for center. The two dashdot and dotted curves explain the fitted possibility
and necessity models, respectively. Figure 1 depicts the change intervals for the proposed
kemnel-based machine. From Table 1 and Figure 1 we know that the proposed kemel-based
machine performs well. In particular, based on the results of objective value (total/average
vagueness) and similarity index from Table 1, we can judge that the proposed kernel-based
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machine is better than possibility and necessity models by quadratic piecewise model in Tseng
et al.(2001).
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