Low Flow Frequency Analysis of Steamflows Simulated from the Stochastically Generated Daily Rainfal Series

일 강우량의 모의 발생을 통한 갈수유량 계열의 산정 및 빈도분석

  • 김병식 (인하대학교 대학원 토목공학과 석사과정 졸업) ;
  • 강경석 (인하대학교 대학원 토목공학과 박사과정 수료) ;
  • 서병하 (인하대학교 공과대학 토목공학과)
  • Published : 1999.06.01

Abstract

In this study, one of the techniques on the extension of low flow series has been developed, in which the daily streamflows were simulated by the Tank model with the input of extended daily rainfall series which were stochastically generated by the Markov chain model. The annual lowest flow serried for each of the given durations were formulated form the simulated daily streamflow sequences. The frequency of the estimated annual lowest flow series was analyzed. The distribution types to be used for the frequency analysis were two-parameter and three-parameter log-normal distribution, two-parameter and three-parameter Gamma distribution, three-parameter log-Gamma distribution, Gumbel distribution, and Weibull distribution, of which parameters were estimated by the moment method and the maximum likelihood method. The goodness-of-fit test for probability distribution is evaluated by the Kolmogorov-Sminrov test. The fitted distribution function for each duration series is applied to frequency analysis for developing duration-low flow-frequency curves at Yongdam Dam station. It was shown that the purposed technique in this study is available to generate the daily streamflow series with fair accuracy and useful to determine the probabilistic low flow in the watersheds having the poor historic records of low flow series.

본 연구에서는, Markov 연쇄 모형에 의해 산정된 모의 일 강우량을 일 유출모형인 Tand 모형에 입력시켜 모의 일유출량을 산정함으로써 저수유량계열을 확장하는 방법을 개발하였다. 또한, 모의된 일 유량계열로부터 지속기간별 연 최저치 계열을 작성하였으며, 지속기간별 연 최저치계열에 대한 빈도분석을 시행하였다. 분석에 사용된 분포형은 Lognormal-2, Lognormal-3, Gamma-2, Gamma-3, LogGamma-3, Gumbel-2, Weibull-2 분포이었으며, 모수추정은 모멘트법과 최우도법을 사용하였다. Kolmogorov - Sminorv 검정방법으로 지속기간별 연 최저치 계열에 적합한 확률분포형을 결정하고, 용담댐 지점을 대상으로 하여 지속기간별 갈수 빈도곡선을 산정하였다. 본 연구에서 제안된 방법을 적용하면 과거 저수 유량계열의 통계적 특성을 잘 나타내는 일 유량의 모의가 가능 하여, 갈수유량계열 자료가 빈곤한 유역에서 확률 갈수량을 추정하는데 유용하리라고 판단된다.

Keywords

References

  1. 대한토목학회논문집 v.16 no.Ⅱ-6 댐 저수지 설계를 위한 갈수량 분석 강경석;서병하
  2. 국제수문개발계획(IHP) 연구보고서 건설교통부
  3. 용담 다목적댐 타당성 조사보고서 건설교통부
  4. 석사학위논문, 인하대학교 하천의 유출기구 특성에 관한 연구 김건홍
  5. 한국수자원학회논문집 v.29 no.6 강수계열의 상태분류에 의한 Markov 연쇄 모의 발생 모형 김주환;박찬영;강관원
  6. 박사학위논문, 인하대학교 Markov 연쇄모형에 의한 일강수계열의 모의발생 박찬영
  7. 연세대학교 산업기술 연구소 논문집 v.17 no.1 시간적 확률구조를 고려한 일강수량의 모의발생에 관한 연구 이원환;이재준
  8. 박사학위논문, 연세대학교 강수계열의 모의발생 모델 개발 이재준
  9. Monthly Weather Review v.91 no.6 A Markov chain model for the probability of precipitation occurrence in intervals of various length. Caskey, J.E.
  10. Stochastic Processes. Coleman, R.
  11. Proceedings of Symposium on Use of Analog and Digital Computers in Hydrology. International Association of Scientific Hydrology, Tucson, Ariz. v.2 Methodology of hydrologic model building. Dawdy, D.R.;Lichty, R.W.
  12. International Institute of Land and Reclamation. Screening of hydrological Data: Tests for stationarity and relative consistency. Dahmen, E.R.;Hall, M.J.
  13. Quart. J. of Royal Meteor. Soc. v.88 no.375 A Markov chain model for daily rainfall occurrence at Tel Aviv. Gabriel, K.R.;Neumann, J.
  14. Wat. Res. Research. v.11 no.2 A stochastic analysis of extrema droughts Gupta, V. K.
  15. Water Resour. Res. v.12 no.3 A Markov chain model of daily rainfall. Hann, C.T.;Allen, D.M.;Street, J.O.
  16. Hydrologic modeling of small watershed Selection, calibration, and testing of hydrologic models James, L.D.;Burges, S.J.;Haan, C.T.(ed.);Johnson, H.P.(ed.);Brakensiek, D. L.(ed.)
  17. Proceedings of Symposium on Statistical Hydrology, Agricultural Research Service A stochastic model for daily rainfall data synthesis. Khanal, N.N.;Hamrick, R.L.
  18. Hydrologic applications Computer programs for water resources engineering Kite, G.W.
  19. Handbook of hydrology Maidment(ed.)
  20. Proc. of Workshop on Surface Water Resource Data Low flow and yield data requirements. McMahon, T.A.
  21. River and reservoir yield. McMahon, T.A.;Mein, R.G.
  22. Hydrol. Paper 80, Colorado State Univ. Probabilities of observed droughts. Millan, J.;Yevjevich, V.
  23. Proceedings of Fourth Conference on Probability and Statistics in Atmospheric Science Some applications of Markov chains Nord, J.
  24. U.S. Geological Survey Water-Supply Paper Estimation of lowflow duration discharge in Massachusetts. Ries, Kernell G.
  25. Handbook of Hydrology Analysis and modeling of hydrologic time series. Salas, J. D.
  26. Computer models of watershed hydrology Tank model Sugawara, M.
  27. J. of Appl. Meteor. v.14 A stochastic model of n-day precipition Todorovic, P.;Woolhiser, D.A.
  28. Structure of daily hydrologic series Yevjevich, V.M.
  29. Probability and statistics in hydrology Yevjevich, V.M.
  30. J. of Hydrol. v.120 Critical drought analysis by second-order Markov chain. Zekai Sen.