Communications for Statistical Applications and Methods
/
제29권6호
/
pp.721-733
/
2022
In this paper we compare parameter estimation by Grassmann manifold optimization and sequential candidate set algorithm in a structured principal fitted component (PFC) model. The structured PFC model extends the form of the covariance matrix of a random error to relieve the limits that occur due to too simple form of the matrix. However, unlike other PFC models, structured PFC model does not have a closed form for parameter estimation in dimension reduction which signals the need of numerical computation. The numerical computation can be done through Grassmann manifold optimization and sequential candidate set algorithm. We conducted numerical studies to compare the two methods by computing the results of sequential dimension testing and trace correlation values where we can compare the performance in determining dimension and estimating the basis. We could conclude that Grassmann manifold optimization outperforms sequential candidate set algorithm in dimension determination, while sequential candidate set algorithm is better in basis estimation when conducting dimension reduction. We also applied the methods in real data which derived the same result.
In the optimized design of an actual structure, the design variable should be selected among any certain values or corresponds to a discrete design variable that needs to handle the size of a pre-formatted part. Various algorithms have been developed for discrete design. As recently reported, the sequential algorithm with orthogonal arrays(SOA), which is a local minimum search algorithm in discrete space, has excellent local minimum search ability. It reduces the number of function evaluation using orthogonal arrays. However it only finds a local minimum and the final solution depends on the initial value. In this research, the genetic algorithm, which defines an initial population with the potential solution in a global space, is adopted in SOA. The new algorithm, sequential algorithm with orthogonal arrays and genetic algorithm(SOAGA), can find a global solution with the properties of genetic algorithm and the solution is found rapidly with the characteristics of SOA.
Sequential pattern mining has become an essential task with broad applications. Most sequential pattern mining algorithms use a minimum support threshold to prune the combinatorial search space. This strategy provides basic pruning; however, it cannot mine correlated sequential patterns with similar support and/or weight levels. If the minimum support is low, many spurious patterns having items with different support levels are found; if the minimum support is high, meaningful sequential patterns with low support levels may be missed. We present a new algorithm, weighted interesting sequential (WIS) pattern mining based on a pattern growth method in which new measures, sequential s-confidence and w-confidence, are suggested. Using these measures, weighted interesting sequential patterns with similar levels of support and/or weight are mined. The WIS algorithm gives a balance between the measures of support and weight, and considers correlation between items within sequential patterns. A performance analysis shows that WIS is efficient and scalable in weighted sequential pattern mining.
RAIM techniques based on TLS have rarely been addressed because TLS requires a great number of computations. In this paper, the particular form of the observation matrix H, is exploited so as to develop a new TLS-based sequential algorithm to identify an errant satellite. The algorithm allows us to enjoy the advantages of TLS with less computational burden. The proposed algorithm is verified through a numerical simulation.
International Journal of Control, Automation, and Systems
/
제2권2호
/
pp.165-170
/
2004
RAIM techniques based on TLS have rarely been addressed because TLS requires a great number of computations. In this paper, the particular form of the observation matrix H, is exploited so as to develop a new TLS-based sequential algorithm to identify an errant satellite. The algorithm allows us to enjoy the advantages of TLS with less computational burden. The proposed algorithm is verified through a numerical simulation.
This study presents the energy-saving sequential control algorithm to handle indoor CO2 and PM2.5 for the improvement of the air quality of school classrooms. To solve indoor air quality (IAQ) problems, air cleaning and ventilation systems are mainly used for school classrooms. Although air cleaning is able to collect PM2.5, it is difficult to remove harmful gas substances. The ventilation system is suitable to tackle CO and CO2, the volume ventilation, however, is relatively small. In this paper, to remove CO2 and PM2.5, the pollutant balance equation for improving indoor air quality is reviewed. The sequential control algorithm of the ventilation and air cleaning system with four levels of criteria is introduced for the effective removal of pollutants. The proposed sequential control algorithm confirms that indoor CO2 and PM2.5 can be properly controlled below the standard value. In addition, the sequential operation of air cleaning and ventilation systems has shown significant improvement in IAQ compared to the independent ventilation system operation. Particularly, such systems are efficient when outdoor PM2.5 is high.
International Journal of Computer Science & Network Security
/
제23권4호
/
pp.116-122
/
2023
Sentiment categorization technique be commonly isolated interested in threes significant classifications name Machine Learning Procedure (ML), Lexicon Based Method (LB) also finally, the Hybrid Method. In Machine Learning Methods (ML) utilizes phonetic highlights with apply notable ML algorithm. In this paper, in classification and identification be complete base under in optimizations technique called sequential minimal optimization with Random Forest algorithm (SMORF) for expanding the exhibition and proficiency of sentiment classification framework. The three existing classification algorithms are compared with proposed SMORF algorithm. Imitation result within experiential structure is Precisions (P), recalls (R), F-measures (F) and accuracy metric. The proposed sequential minimal optimization with Random Forest (SMORF) provides the great accuracy.
This paper is concerned with a computer-aided state assignment, that is, coding race-free internal states of asynchronous sequential circuits, and a method for minimizing the combinational network of asynchronous sequential circuits. The FORTRAN version of the peoposed algorithm results in race-free state assignments and reduction of the number of connections and gates with near minimal hardware cost. Some examples are designed by the proposed computer program to illustrate the algorithm in this paper. Finally, results are compared with those of the other methods.
In structural design, the design variables are frequently selected from certain discrete values. Various optimization algorithms have been developed fDr discrete design. It is well known that many function evaluations are needed in such optimization. Recently, sequential algorithm with orthogonal arrays (SOA), which is a search algorithm for a local minimum in a discrete space, has been developed. It considerably reduces the number of function evaluations. However, it only finds a local minimum and the final solution depends on the initial values of the design variables. A new algorithm is proposed to adopt a genetic algorithm (GA) in SOA. The GA can find a solution in a global sense. The solution from the GA is used as the initial design of SOA. A sequential usage of the GA and SOA is carried out in an iterative manner until the convergence criteria are satisfied. The performance of the algorithm is evaluated by various examples.
Biological sequences such as DNA and amino acid sequences typically contain a large number of items. They have contiguous sequences that ordinarily consist of more than hundreds of frequent items. In biological sequences analysis(BSA), a frequent contiguous sequence search is one of the most important operations. Many studies have been done for mining sequential patterns efficiently. Most of the existing methods for mining sequential patterns are based on the Apriori algorithm. In particular, the prefixSpan algorithm is one of the most efficient sequential pattern mining schemes based on the Apriori algorithm. However, since the algorithm expands the sequential patterns from frequent patterns with length-1, it is not suitable for biological datasets with long frequent contiguous sequences. In recent years, the MacosVSpan algorithm was proposed based on the idea of the prefixSpan algorithm to significantly reduce its recursive process. However, the algorithm is still inefficient for mining frequent contiguous sequences from long biological data sequences. In this paper, we propose an efficient method to mine maximal frequent contiguous sequences in large biological data sequences by constructing the spanning tree with a fixed length. To verify the superiority of the proposed method, we perform experiments in various environments. The experiments show that the proposed method is much more efficient than MacosVSpan in terms of retrieval performance.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.