International Journal of Control, Automation, and Systems Vol. 2, No. 2, June 2004 165

Development of a Sequential Algorithm for a GNSS-Based
Multi-Sensor Vehicle Navigation System

Chang Wan Jeon, Gyu-In Jee, and Gérard Lachapelle

Abstract: RAIM techniques based on TLS have rarely been addressed because TLS requires
a great number of computations. In this paper, the particular form of the observation matrix H,
is exploited so as to develop a new TLS-based sequential algorithm to identify an errant satel-
lite. The algorithm allows us to enjoy the advantages of TLS with less computational burden.
The proposed algorithm is verified through a numerical simulation.
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1. INTRODUCTION

Since the mid 1980s, receiver autonomous integrity
monitoring (RAIM) has received a great deal of
attention. This is because the integrity information
provided via a navigation message may not be timely
enough in some applications. Nowadays, extensive
researches on this topic have been performed under
the name of RAIM, FDI (failure detection and
isolation), and FDE (failure detection and exclusion)
[1,2].

One of the major methods of GPS positioning and
integrity monitoring is to formulate a linear
measurement model and solve it using the least
squares (LS) method to obtain an appropriate position
and clock bias [3,4]. Particularly in the case of
integrity monitoring, many algorithms have formed n
subsets of n-1 satellites by sequentially deleting one
satellite not previously excluded and have calculated
test statistics for each satellite subset using least
squares estimates [5-7].

Recently Juang [8] reformulated a linear
measurement model and proposed a positioning and
integrity monitoring scheme based on total least
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squares (TLS) instead of least squares. He took
advantage of TLS at the expense of more numerical
computations by proposing a new integrity monitoring
metric. The new metric employs a minimum singular
value from SVD that is almost indispensable to
solving the TLS problem. Juang’s scheme is suitable
for failure detection.

In this paper, a new TLS-based sequential
algorithm focused on failure isolation, even though it
can be used for failure detection, is proposed. This
algorithm utilizes the fact that a linear matrix equation
has a precisely known column. The algorithm takes a
sequential form so as to reduce the amount of
computations necessary. It makes use of previous
results without repeating the entire process. Therefore
one can enjoy, with less computational burden, the
advantages for integrity monitoring provided by Juang
who employed TLS as a tool for positioning and
integrity monitoring

2. TECHNICAL BACKGROUND

This section describes the linear measurement
model and mixed LS-TLS problem for discussion in
the remainder of the paper.

2.1. Linear measurement model

A linear model is generally employed for proper
positioning and integrity monitoring. In [8], the linear
measurement model was reinvestigated considering
errors in observation matrix H. In this model, error
due to a failed satellite is included in observation
matrix H. Therefore, the observation matrix H is not
exactly known any longer. Naturally, TLS is
employed to solve this problem. In this paper, the
linear model in [8] will be used. Therefore, a brief
description of the model is given.

Suppose n satellites are visible. The measurement
model is
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pi="u—si—Asi"+c+ei, €h)
where p' is the pseudo-range measurement with
respect to the i-th GPS satellite, u is the user’s
position, ¢ is clock offset, s’ is the broadcast position
of the i-th GPS satellite, As’ is the difference
between the broadcast position and true position of the
i-th GPS satellite, and ¢ accounts for the additional

l

errors. € is treated as zero mean noise. Both the

pseudo-range pi and the broadcast position s’ are

subject to errors due to ephemeris errors, SA effects if
it exists, environment effects, satellite failure,
interferences, noises, and so on. Let

x Ax'
u={y|, s = y' |, and As' = Ayi )
z z! AZ'

Suppose that the linearization point is at

X0
u=uy= Yo

L %0

and c=¢ (3)

then the estimate of the psudo-range measurement is
given by

20 =Hu0 —s' —As’N+cO

4

=\[(xi+Axi—xo)2 +(y"+Ayi—y0)2+(zi+Azi—zo)2 +¢p

Define
x—xO
r
r=|\y-yy|, 6=—c+cy,and pz[é} (5)
Z_ZO

Then, the linearized matrix equation of (1) with
respect to n observable satellites becomes

Hp=q+e, (6)

where
My hy o1 o= p' e
H- h?l hgz hg3 1 q-= ,057102 e= e’ ’
o By By 1 o0 — 0" e"
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\/(xi +AX —xo)z +(yi +Ayi —yo)2 +(zi +AZ —20)2
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Note that the last column of the H matrix is
precisely identified. Therefore solving the linearized
matrix equation is a mixed LS-TLS problem described
in the next section.

2.2. Mixed LS-TLS problem
Let b=q+e for simplicity. Then (6) becomes a
well-known linear matrix equation,

Hp=b. (7)

In the classical LS approach, all elements of H are
assumed to be free of error; hence, all errors are
confined to the observation vector b . This assump-
tion, however, is frequently unrealistic in various
applications. The TLS is one method of fitting that is
appropriate when there are errors in both the
observation vector b and the data matrix H. When
some of the columns of the data matrix H are free of
errors, like the case considered in this paper, we refer
to it as a mixed L.S-TLS problem [9]. In this case, we
can solve the mixed problem by solving the LS and
TLS problem separately with a proper batch algorithm
in [9]. Unfortunately, the batch process demands a
great deal of computational effort. It is inappropriate
to apply GPS integrity monitoring because of
computational burden. An approach to reduce the
computational effort is to construct an algorithm in a
recursive (or sequential) form. In this paper, a
sequential algorithm, which has many advantages over
the batch algorithm, is proposed for effectively
explaining the mixed LS-TLS dilemma discussed in
the previous section for GPS integrity monitoring, It
starts from the batch algorithm. Therefore, the existing
batch algorithm is reviewed in this section.

We can permute the order of columns in H with
a proper permutation matrix and obtain the following
equation without loss of the generality,

Ax=b, (8)
where
Ly hp Mg
A=l h?‘ ke h?3 and b:H. ()
Do : : r

1 hnl hn2 hn3

This trick is for convenience only. Let a matrix
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A:[AI;AZ] be given whose first p columns A,

have no error and have full column rank. Suppose the
matrix have p exactly known columns to generalize
the discussion, although it has only one exactly known
column in this case. Then, the algorithm is as follows.
Perform p Householder transformations Q on the

matrix [A;b] so that

R;y Ry y

QT[AI;Az;b]:{O Ry v

}, (10)

where Ry} is a PXP upper triangular matrix.
(scalar in this case). Then, compute the TLS solution
X, of RyXx, =y, by the SVD. X, yields the last
n-p components of the solution vector % . To find the
first p components X; of the solution vector, solve

Riix; =y1 —Rppxs. (11)
This is simply the LS solution obtained by
projecting the reduced observation vector b - A,X,

into the space R(Al) generated by the known

columns of A .

Note that it requires a great number of operations if
we repeat the whole process for n subsets of n-1
satellites to identify an errant satellite.

3. DERIVATION OF A SEQUENTIAL
ALGORITHM TO IDENTIFY A FAILED
SATELLITE
deleted. Let

Ay = [Ak,l Ak,zJ be the matrix formed by deleting
the k-th row of A. Ay is assumed to be exactly

Suppose the k-th satellite is

known. Let by be the observation vector formed by
deleting the k-th element of b . Suppose we obtained
the Householder transformation matrix Q; on the

matrix [Ak;bk] so that
Qi [ A Abi [=[R: B ], (12)

where Ry =Q;€Ak’1 eR" P s an  upper

triangular matrix and B, =Q1C [Ak,z; bk] At the

next step, (k+1)-th satellite is deleted and k-th satellite
is included. The algorithm takes two steps, deleting
the (k+1)-th satellite ((k+1)-th row) and adding the
previously deleted k-th satellite (k-th row). When the
previously deleted satellite is included, the data and
observation matrices are given as follows:

A b
Azﬂ{ 4 and bzﬂ{ "}, (13)
(lk IB/C

where @; and f; are the previously deleted k-th
row. Then, the (k+1)-th satellite (the first row of Ay
and b;) should be deleted. Denote the matrix and the
vector obtained by deleting the first column from Ay
and by by A;=[Ag;A] and By

respectively.
As the first step, consider the (k+1)-th satellite
deleting case. It is claimed to compute the QR

factorization of ;‘k,l, ie.,
Kk,] :Qkﬁk (14)

for the sequential algorithm. It is also required to
compute the matrix B,

B, =Qf[As:by . (15)

For sequential processing of the above operations, we

must update the Qk R f_{k and Ek from the
previous ones, Q;, R; and By.

Consider the updating Q; and R, from Q

and R, firstly. This technique is well described in

[10]. Let q1T be the first row of Q; and compute
the Givens rotations Gy,G,,--,G,_, such that

G{G] -Gl ,q,=pe,, (16)

where p ==l . Note that

T
v
G[G]G] R, { } (17)
R

is upper Hessenberg and that

Q.G G =" O (18)
k™ n-2 1~ 0 Qk ’
= m(n-2x(n-2) .
where Q; €N is orthogonal. Thus, we
can obtain the updated QR factorization.
Next, we consider the computation of B, from

B, . Let

T

@ B

[Apsby |=| 2 TE, (19)
Ara by

where 04,1 and f;,; denote the row related to

the (k+1)-th satellite.
Then,

TT . T TaT T o
GGy G, B =G Gy -G, ,Qy [Ak,z" bk]
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T
I:’D 0 } ®p i IB_k+l
0 Qf || Axa by
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(13
_| Pkt Pl (20)
QrAy Qiby
T
_| Pt 5 PP |
B,

Thus, we can easily compute l_3k from By.
As the second step, consider adding the previously
deleted satellite. From (14) and (15), we have

T T
. — Op; W23 B
H,,, =diag(1,Q] |PA, =[ﬁ v —k},m)
koo k

where

Kk,l; Kk 25 Bk
Ava=| 1 1 (22)
ap U0 Py

and the permutation matrix

P { 0 l:' (23)
I(1172)><(n—2) 0

Note that H,,, is upper Hessenberg in the first p

columns. Thus, Givens rotations J;,J,.J, could

be determined so

T

T o —1)x

1 JlTL_lkl } =R, Ry e R (24)
k

is upper triangular. It follows that

R Rpan

Yi+11
Jpdpa Il = { 0

} ,(25)

Rin2n Yid2

pxp
Ry eR

s

Ry, 15 e RU7P7HP)

>

Yis1) €R? and Yinp €R™P ' Thus, the original
problem
A Ao |[x b
T, T, k+1,1 _| Px (26)
o o | Xe2] LB

is converted to
Reviir Repnna || Xewnn || Yasia 27
0 Ry || Xkn2 Yi+1,2

without applying SVD to the original equation.
Then, we can solve the mixed LS-TLS problem

separately. The TLS solution X, of the equation

Ry120Xk412 = V12 (28)

can be obtained by the SVD. Although the SVD is
numerically stable, a great number of operations are
required. To overcome this problem, we construct the
following matrix

Dyt =[Rysi 225k }T [Rk+1,22;yk+1,2} (29)

and compute the minimum eigenvector (associated
with the minimum eigenvalue) using the FALM (Fast
Algorithm to Locate Minimum eigenpair) [11,12]
instead of computing the minimum singular vector of

the matrix Riy12 (associated with the minimum
singular value). Using the TLS solution, the LS

solution Xx+1) of the equation

Rt 11X =Yia1) ~ Resi2Xe412 - (30)
can be obtained. Then the overall solution at the
T
r .7
(k+1)-th stage becomes Xg :[xk+l,17xk+l,2} . For

the next step, the Q1 is computed in a sequential
form

Quy =P diag(1,Q, )] 3 --35,.  (31)

Based on the above analysis, we summarize the

algorithm below. The algorithm is expressed via
MATLAB grammar, since it is simple and well known.

ALGORITHM
Given Q. Ry, By, of, f;
Step 1: Compute Givens rotations G,G,,-+,G,,_5
such that
G{G] --G]_,q; = pey,
where qlT be the first row of Q; and p=%1.
Step 2: Compute ﬁk, (_2/( and Ek.
R, =G -GI_,R (2:(n-1).3)
Q; =Q,G,» G (2:(n-1),2:(n-1))
B, =G| --G]_,B, (2:(n-1),3)
Step 3: Compute Givens rotations Jy,J5,-+,d,
such that

T

THT T -1

JPJ;U'I"'J1 |:ﬁk’1}:Rk+l’ Rk+1 ER(n »p
k

is upper triangular.

Step 4: Compute Ryii12, Rigm, Yean s
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Yi+12
Riiiz Yaa S i By
Rinp Vi pep B,
_ — (-
where Ry eRP p), Ryt Rl P p)’

n—p—1

Yertd €R” and Yinp € R
Step 5: Construct the matrix D,,, in (29) and
compute the minimum eigenvector v of the matrix

D,,, using the FALM. Compute, then, the TLS

solution Xg+1,2

T
Xp12 =7 |:V1,v2,-~-,vk_p:|

Vi—p+1

Step 6: Compute the least squares solution Xj,j; of
the equation (30). Then the overall solution is

T
T .7
Xkt :l:xkﬂ,laxkﬂ,z} .

Step 7: Compute Q,_, asin (31). If every satellite is

excluded one by one, stop. If not, proceed to

Step 1.
Since to compute a Givens rotation matrix requires
4 flops and one square root and to multiply the Givens
rotation matrix to a vector requires 4(m-1) flops [10],
the algorithm requires about 44m+81 multiplications
and 2m square roots for each subset test. The m is n-1,
where n is the number of visible satellites. On the
other hand, the SVD requires 50m + 256 for
computation of singular values and right singular

3

vectors and requires 10m> +100m +%n flops for

computation of singular values and right and left
singular vectors.

4. SIMULATION RESULTS

In this section, a simulation result is discussed. The
focus is on how well the proposed algorithm works
under a satellite in a failed circumstance. The satellites
data were generated using MATLAB toolbox [13].
Thermal noise, tropospheric error, multipath error, and
ionospheric error were considered in generating the
satellite data. A simulated pseudo-range error (1000m)
was injected to a satellite at time t. Various mag-
nitudes of the simulated error were used and they
show similar results regardless of the magnitude. The
value of the time t is not important because the
proposed algorithm runs between adjacent epochs. In
this simulation, we assume that there is no failure until
time t-1 and a satellite (PRN #7 in this case) fails
between t-1 and t. Then, the satellite date at time t is
incorrect. We examine how the algorithm is working
in this case. The following figures describe the resulits.

x 10 Calautated Position(X-Y}
3.196 .
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3.1958, present
3.1956
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Y -axis (m)

3.1948
3.1946
3.1944 ¥

3.1942;

194 . .
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Fig. 1. Calculated position.
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identification Number of Visibie Sateliites

Fig. 2. Calculated clock bias.

Fig. 1 shows the calculated positions. The x-axis
displays longitude and the y-axis denotes latitude. The
star denotes previous positions at time t-1. Since the
algorithm calculates a position with 7 satellites, 8
positions are calculated at each time. The 8 positions
almost coincide with each other because there is no
failure in 8 visible satellites.

The diamond denotes the present 8 positions. 7
present positions are apart from the previous position,
which implies there is an errant satellite. Only one
position is located near the previous positions. This
means that the excluded satellite is failed.

Fig. 2 shows calculated clock bias. We assumed
zero clock bias in this simulation. The 8 previous
clock biases (star mark) are near zero. The diamonds
stand for present clock biases. In the figure only one
present clock bias (PRN #7) is near zero, which means
the 7" satellite is errant. With a proper measure and
threshold even though it is not the focus of this paper,
the proposed algorithm can provide superior
performance for failure detection and identification
based on TLS technique.
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5. CONCLUSIONS

In this paper, a new TLS-based sequential
algorithm to identify an errant satellite is proposed. A
major contribution of this paper might be the fact that
the algorithm is new and allows us to enjoy the
advantages of TLS with less computational burden
since it takes a sequential form. With a proper
measure and threshold, which have been extensively
studied until now, it can provide performance for
failure detection and identification.
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