18 Tae Ho Kang et al. : Mining Maximal Frequent Contiguous Sequences in Biological Data Sequences

Mining Maximal Frequent Contiguous Sequences in Biological Data Sequences

Tae Ho Kang*
Department of Computer and Communication Engineering
Chungbuk National University, Cheongju, Korea.

Jae Soo Yoo
Department of Computer and Communication Engineering
Chungbuk National University, Cheongju, Korea.

Hak Yong Kim
Department of Biochemistry
Chungbuk National University, Cheongju, Korea

Byoung Yup Lee
Department of Electronic Commerce
Paichai University, Daejeon, Korea

ABSTRACT

Biological sequences such as DNA and amino acid sequences typically contain a large number of items. They have contiguous
sequences that ordinarily consist of more than hundreds of frequent items. In biological sequences analysis(BSA), a frequent
contiguous sequence search is one of the most important operations. Many studies have been done for mining sequential patterns
efficiently. Most of the existing methods for mining sequential patterns are based on the Apriori algorithm. In particular, the
prefixSpan algorithm is one of the most efficient sequential pattern mining schemes based on the Apriori algorithm. However, since
the algorithm expands the sequential patterns from frequent patterns with length-1, it is not suitable for biological datasets with long
Jrequent contiguous sequences. In recent years, the MacosVSpan algorithm was proposed based on the idea of the prefixSpan
algorithm to significantly reduce its recursive process. However, the algorithm is still inefficient for mining frequent contiguous
sequences from long biological data sequences. In this paper, we propose an efficient method to mine maximal frequent contiguous
sequences in large biological data sequences by constructing the spanning tree with a fixed length. To verify the superiority of the
proposed method, we perform experiments in various environments. The experiments show that the proposed method is much more
efficient than MacosVSpan in terms of retrieval performance.
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L. INTRODUCTION protein function region and the comparison of DNA and amino

acid sequence homology, etc. The results of this analysis can

Nowadays, development of bioinformatics has accumulated
the amount of biological information rapidly, and required
information technologies for quicker and more effective
analysis of huge biological information. Analysis and
prediction of genetic function by bioinformatics can curtail the
exorbitant expenses required by the existing biological
technique, and lessen the time taken for experimental
verification. Analysis of genetic functions includes predictions
of regulator binding sites, of promoter regions and of specific
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offer important clues for new genetic discovery and functional
analysis. Comparative and analytic methods of the homology of
biological data sequences are typical bioinformatics
technologies for the analysis of huge biological
data. Biological sequence data have two kinds of sequences -
DNA sequence and amino acid sequence. Generally, these
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sequence data are huge and spread over several databases
and each sequence is very long as it has hundreds or thousands
of items. These biological sequences have regions or specific
patterns, in which have been conserved from genetic mutation
or variation, while conserved regions or specific patterns
coexisting in several biological sequence data can be applied as
a phylogenetic foundation and also have close relation with
functions. Searching motif and domain is divided greatly into
two. The first is finding a supposed motif & domain or
sequence to represent a set from the given sequence data
set. The second is searching the existing open database to
know if the given sequence has a specific motif or domain.

Of them, frequent maximal contiguous sequence mining is
the first, which tries to find the frequent maximal contiguous
sequence pattern from sequences of more than two[1-3]. The
problem of finding the frequent maximal contiguous pattern is
very important in bioinformatics and is widely used[4-7]. When
more than two DNA sequences are given, their commonly-
included sequence pattern can be used in order to understand
their biological correlation. Although in the beginning,
researchers tried to discover frequent contiguous patterns based
on the Apriori algorithm[8][9], lately they have attempted to
improve performance by a method that uses a projected
database and the PrefixSpan Algorithm[10][11]. However,
when mining long frequent contiguous sequences, the method
to recursively grow sequential patterns item by item is
inefficient in terms of time and space.

Therefore, this paper reduces another data space and
decreases the frequency of database accesses dramatically by
removing unnecessary data generation and proposes an
algorithm that is able to discover frequent subsequence pattern
from several sequence data. For this, first of all, all sequence
data of the database is read in the same way as the fixed length
and fixed-length spanning tree is constructed. And the fixed-
length contiguous sequences satisfying a specified minimum
support threshold are produced by using the constructed fixed-
length spanning tree, and the sequence candidate set of up to
the maximal length is produced by expanding these sequences
1 by 1 in length. To show the superiority of the proposed
algorithm, experiments are performed under a variety of
environments.

The rest of this paper is organized as follows. Section 2
explains the recent related researches and suggests their
problems. Section 3 proposes a new algorithm in order to
solve the problems and analyzes its characteristics. In section
4, we compare the performance of our proposed method with

the existing methods. Finally, Section 5 presents the conclusion.

II. RELATED WORK

Many researches have been performed to find the frequent
maximal contiguous subsequence from more than two
sequences. Most of Existing methods for mining sequential
patterns are Apriori-like, ie., based on the Apriori property
proposed in association mining[4], in which states that any
super-patterns of nonfrequent patterns cannot be frequent. A
typical Apriori-like algorithm such as GSP[5] adopts a
multiple-pass, candidate-generation-and-test approach in

sequential pattern mining. However, their running time
increases exponentially with increasing average sequence
length, and thus such high-dimensional data render most
current algorithms impractical. Based on the idea of Apriori, a
more efficient algorithm, called PrefixSpan[6], has been
proposed in recent years, which presents the projection-based
sequential pattern-growth approach. Its general idea is to
examine only the prefix subsequences and project only their
corresponding postfix subsequences into projected databases.
In each projected database, sequential patterns are grown by
exploring local length-1 frequent patterns. However, because
every expansion of sequence pattern needs a recursive process
using the projected database, it is inefficient in long sequence
data like the DNA or amino acid sequences. Last, the
MacosVSpan[7] algorithm produces, once every item data, the
projected database consisting of subsequences sequentially
concatenating each data item, gets the maximal subsequence of
each data item by fixed-length span method, and looks for the
frequent maximal contiguous subsequence by using the suffix
tree. In order to explain the algorithm, first of all, we suppose
that there is a DNA sequence database as shown in Tab. 1 and
assume that minimum support is 2.

Table 1. DNA Sequence Database

ID sequence

10 ATCGTGACT
20 CATCGTT
30 CATCGTGAAG
40 TCGTGATTG
50 GCGTGATT

The set of items in the database is {A, C, T, G}. A sequence
<ATCGTGACT> is 9-sequence since there are 9 instances
appearing in this sequence. The whole sequence
<ATCGTGACT> contributes 2 to the support of <A>. Since
both sequences 10 and 30 contain contiguous subsequence
s=<ATCGTGA>, s is a frequent contiguous subsequence of
length 7.

MacosVSpan method first construct four projected
databases: <A>-, <C>-, <T>- and <G>- projected database. The
projected database of item A is <TCGTGACT>, <CT>,
<TCGTT>, <TCGTGAAG>, <AG>, <G> <ITG> and
<TT>. Fig.l shows spanning tree of 3 of fixed length for
getting the maximal sequence satisfying 2(the minimum
support threshold) starting with A by using the span method
from the A-projected database.

The internal node in the tree represents the overlapping
prefix and the leaf node in the tree represents the
subsequence. The fixed-length span method with a root
ATCG satisfying the minimum support threshold, of the
subsequences of leaf node, is executed again as shown in the
right side of Fig.l. In the result, the maximal contiguous
sequence starting with A and coming through the process is
<ATCGTGA>. Then the same process is recursive for C, T
and G in the root ATCG. Finally, producing the suffix tree of
the maximal sequences of each item enables the last maximal
sequence to be found.
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Fig. 1. Fixed Length Span Method

The algorithm significantly decreases the recursive
execution process for expanding sequence patterns, when using
the PrefixSpan method. However, MacosVSpan also has the
problem of producing and using the projected database. The
longer the data sequence becomes, the larger the projected
database gets, the faster the size of the projected database
increases in comparison with the original database. Its detailed
explanation is treated in the discussion of the problems of the
projected database in section 4.1. The projected database is
very big over the original data in size. The more the kinds of
items, the greater the expense of obtainingthe projected
database of each itemn, for example, in the case of an amino
acid sequence consisting of 20 items.

III. THE PROPOSED MAXIMAL CONTIGUOUS
SEQUENCE MINING ALGORITHM

In this section, we propose an algorithm to efficiently find
the frequent maximal contiguous sequences from several
biological data sequences without producing the projected
databases.

Fig.2 shows the maximal contiguous sequence algorithm
proposed in this paper. The algorithm is divided into 3
stages. The first stage recursively reads the subsequence with
the same length as the fixed-length window from the given
sequences, and constructs a fixed-length suffix tree. The
second stage produces subsequences(satisfying minimum
support threshold) from the constructed tree through depth first
search, and expands them into the whole candidate
sequence. The third stage searches the maximal sequence
satisfying the real support threshold by finally comparing the
produced candidate sequence and the database. At this time,
comparison is executed from long candidate sequences to short
ones, and stops when satisfactory results are achieved. More
detailed explanation on algorithm execution is done through
examples.

Algorithm
Input : Sequences Set S(S;, S,.. Sx), FixedLength W, Minimum
Support threshold Min_Sup

Output : fixed length suffix trie T, MFCSeq

Step 1: extract fixed length subsequence from database and
construct spanning tree

1. for(i=0; i< N; i++)

2. WS = extractFixedLengthSubseq(W, S));
subsequences

3. memTree = constructTree(W); // construct spanning tree
4. for(i=0; i< WS; I[++)

5. insertSequences(WS;

/fextract

memTree); //insert sequence

and frequency count

Step 2: search tree and extract candidate sequence

6. candidateSeq = searchTree(memTree, Min_sup); //extract
candidate sequence

7. resultSeq = makeSeqCandidate(candidateSeq); // expand
sequence

Step 3: compare candidate sequence with Database

8. MF(CSeq = searchDatabase(resultSeq);

Fig. 2. The Maximal Contiguous Sequence Mining Algorithm

ATCGTGACT
ATCG
TCGT
GACT
CATCGTT
CATC

CGTT

Fig. 3. Fixed Length Scan Method

The algorithm is based on DNA sequence database of Tab. 1.
Its fixed length is supposed as 4 and its minimum support
threshold as 2. Above all, the sequence database with length-
4(in the size of data fixed-length window) is moved one by one
from the first position and is read in the same length as the
fixed-length window, and then a spanning tree of 4(in fixed
length) is constructed. Fig.3 shows that sequence data are read
in the same length as the fixed length. Fig. 4 shows that the
spanning tree is constructed by reading the whole sequence in
the same length as the fixed-length specified in the same way
as Fig.3. Each node of the tree includes a frequency and
maintains the frequency of subsequence overlapping.

Wid
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Fig. 4. Fixed Length Spanning Tree

Fig.4 shows a fixed-length spanning tree that includes the
frequency information of all subsequences with length-4
occurring from each sequence data of the whole sequence
database. When the tree is constructed like Fig.4, retrieval of
the tree can obtain a contiguous subsequence with length-4,
satisfying the minimum support threshold through frequency
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search. The obtained contiguous sequences are <ATCG>,
<TCGT>, <TGAT>, <CGTG>, <CATC> <GTGA> and
<GATT>. These data are all subsequences with length-4,
occurring over the minimum support threshold in all the
compared sequences, and become candidate sets with the
possibility of making maximal contiguous sequence. That is,
the maximal contiguous sequence satisfying the minimum
support threshold are made up of the above sequences. It
results from the fact that any super patterns consisting of
nonfrequent sequence patterns cannot be frequent in the Apriori
algorithm.

Next, binding and expanding sequences with a possibility of
concatenating each other in frequent contiguous sequences with
length-4 produce the candidate set of the maximal contiguous
sequence. In order to bind sequences, like <ATCG> and
<TCGT>, they can be concatenated and expanded the same as
<ATCGT> in the case when the first-A-excluded remainder
from <ATCG> and the last-T-excluded remainder from
<TCGT> accord with each other. The result becomes
<ATCGT>, <TCGTG>, <ITGATT>, <CGTGA>, <CATCG>
and <GTGAT>, and then the process is recursive in the same
way to expand until it is impossible to expand further. Tab. 2
shows the whole candidate set of the maximal item group
finally obtained through the process. Tab. 2 predicts the
sequences able to expand maximally from a contiguous
subsequence with length-4.

Table 2. Candidate Subsequences

Length 4 Length 5 Length 6 Length 7
ATCG ATCGT ATCGTG CGTGATT
TCGT TCGTG TCGTGA CATCGTG
TGAT TGATT CATCGT ATCGTGA
CGTG CGTGA CGTGAT TCGTGAT
CATC CATCG GTGATT
GTGA GTGAT
GATT

Table 3. Actual Sequences Satisfying Minimum support
threshold

Length 4 Length 5 Length 6 Length 7
ATCG ATCGT ATCGTG CGTGATT
TCGT TCGTG TCGTGA ATCGTGA
TGAT TGATT CATCGT
CGTG CGTGA CGTGAT
CATC CATCG GTGATT
GTGA GTGAT
GATT

Table 3 is the result of examining the actual sequences
satisfying the specified minimum support threshold. It can be
confirmed that there is no big difference between candidate
sequence in Table 2(gradually expanding from subsequences
with length-4 satisfying support threshold) and the actual
subsequence satisfying the minimum support threshold in Table
3. Therefore, it can be known through expansion that the
resultant candidate subsequence is very similar to the actual
subsequence, and that it is possible to analogize the maximal
candidate sequence through it. Comparison of Table 2 and
Table 3 can confirm that the method of producing the candidate
sequence is considerably exact.

The finally-produced candidate set is confirmed through
real database searches from the maximal candidate
sequences. Then, the produced results make it unnecessary to
search a shorter candidate set. As a result, the real frequent
maximal contiguous sequence in sequence database of Table 1
is <KATCGTGA> and <CGTGATT>.

The fixed-length spanning tree of the proposed algorithm
can meet various minimum support thresholds very effectively
and flexibly. Especially, when the minimum support threshold
is more than 5, the proposed method can find a maximal
contiguous sequence only by tree search, without producing a
candidate subset.

IV. PERFORMANCE EVALUATION

This section presents that performance evaluation reveals the
excellence of the proposed algorithm. Before that, we explain
the problems of the projected databases separately produced for
searching contiguous subsequences in the existing methods.

1. The Problems of Projected Database

The projected database generally has a relatively large
capacity, compared with the original sequence database. To
prove this fact, the projected database was produced through
the following sequence data, and was compared in its size. In
Table 4, after each projected database of the original sequence
data of different size made, their data size is compared. The
used data are a randomly-produced DNA sequence data and the
actual DNA sequence data, with data size of 5,000 bytes and
8,932 bytes, respectively. In the result of producing the
projected database of each item (A, C, G and T) from each
sequence, there is a difference in the size of data. Fig. 5
compares the differences shown in Table 4 by using a graph.

Table 4. Projected Database Size

Original A- .C— .G- T-

Data Type Projected | Projected | Projected | Projected
Data
Data Data Data Data

[Random
Sequence 5000 66529 61286 64734 59901
(Byte)
DNA
equence 8932 1034951| 920142 967499 1015148
EByte)

International Journal of Contents, Vol. 3, No. 2, June 2007



22 Tae Ho Kang et al. : Mining Maximal Frequent Contiguous Sequences in Biological Data Sequences

8 5000(Byte) B 8932(Byte)

1,200,000

1,000,000

800,000

600,000

Data Size(Byte)

400,000

200,000

Oreginal  A-P C-P T-P G-P
Projected Database

.

Fig. 5. Size of Projected Databases

Table 4 and Fig. 5 show that the larger the capacity of the
original sequence data, the larger the exponential increase in
the capacity of the projected database. That makes production
of the projected database very expensive which has a major
effect on the deterioration of retrieval performance. The longer
the length of the sequence becomes, the more the capacity of
the projected database increases. Therefore, in order to solve
the problem, this paper has improved retrieval performance by
making possible frequent contiguous subsequences without
producing the projected database.

2. Retrieval Performance and Used Memory Amount

Fig. 6 shows the excellence of the retrieval performance of
the proposed algorithm by comparing it with the retrieval
performance of the existing MacosVspan algorithm. As for the
MacosVspan algorithm, as mentioned in the related research,
the projected database of each item has to be produced, and the
spanning tree has to be constructed recursively several times, in
order to retrieve the maximal common subsequence from long
sequence data. However, the proposed algorithm needs only
one tree construction and one database scan. But, as the
proposed algorithm(in the case of the predicted candidate set)
includes false positive data, so it has to confirm its real
existence through database scan finally. However, the more the
fixed length is expanded, the smaller the produced candidate
sequence becomes; so this false positive data can be greatly
reduced. The fact can be confirmed in Fig. 6 where the
proposed algorithm enables the change of the fixed length to
bring the change of retrieval performance. As shown in Fig. 6,
the algorithms with a fixed length-7 has remarkably higher
retrieval performance than those with a fixed length less than 7.

[—4— Pfoposed Method —&—MacosVSpan ‘

Fixed Length

Fig. 6. Retrieval Performance According to Change of Fixed
Length

Table 5 represents the used memory according to the change
in fixed length. The tree was constructed by using the random
data, while the fixed length changed from 5 to 10, and at the
same  time, the used memory amount  was
measured. Whenever the fixed length is expanded by about 1,
twice as much memory is required. When the fixed length is
10, it can accept the amount of used memory, of 1Mbyte as
sufficient.

Table 5. Memory Usage According to Change of Fixed Length

Fixed
tlength Type | > | 6 | 7 8 9 10 -
Memory
1911264168225692/535892909892/1296
Usage(Byte) 68 9 474

Moreover, in the case that the length of the searched
maximal common subsequence is shorter than or the same as
the fixed length, we can obtain exact results at once, without an
additional confirmation. In comparison with the existing
method, as for the proposed method, the higher the frequent
support threshold becomes, the more the candidate data lessens;
it can result in much better retrieval performance.

Fig.7 compares the retrieval performance of the proposed
method (according to minimum support threshold) with that of
the existing method. A tree with a fixed length-5 was
constructed using the above-mentioned random data. It is
shown in Fig. 7 that when the minimum support threshold in 4,
the difference in retrieval speed between the proposed method
and the MacosVSpan is minimum.

International Journal of Contents, Vol. 3, No. 2, June 2007



Tae Ho Kang et al. : Mining Maximal Frequent Contiguous Sequences in Biological Data Sequences 23

l —— Proposed Method —#—MacosVSpan

Minimum Support

Fig. 7. Retrieval Performance According to Change of
Minimum Support

Fig. 8 shows the used memory amount according to the
change of sequence length when the number of DNA sequences
in 100 and the length of the sequences is from 100 to 500. The
data is used for the construction of a tree with a fixed length of
7. Fig. 8 shows that in the case of a relatively short sequence
(length=100), the used memory amount of the proposed
algorithm is larger than that of the existing method. The
MascosVspan algorithm processes one projected database after
another, and then produces, from the results, the last maximal
search results by using a suffix tree, whereas the proposed
algorithm requires slightly larger memory because it constructs
the spanning tree by processing all of them at once. However,
the above result appears in the case where the compared
sequence is short. The MacosVspan algorithm needs large
memory because the longer the sequence, the larger the suffix
gets, while the fixed-length spanning tree of the proposed
algorithm no longer increases after it reaches the necessary
maximum.

—&—Proposed Method ~ —#— MacosVSpan |

3,500,000

3,000,000
’ﬂ\.) 2'500’000 SR ——

2,000,000

1,500,000 /
1,000,000 |- /
500,000

0

Data Size(Byt

k¢
4
4

100 200 300 400 500
Sequence Length

Fig. 8. Memory Usage According to Change of Sequence
Length

3. Algorithm Analysis

The proposed algorithm has the following characteristics,
compared with the previous researches. First, it can accept
several values of minimum support threshold effectively by
means of one time database access and construction of fixed-
length spanning tree. Second, the longer the fixed length of
the tree, the better the retrieval performance. Third, the

proposed method can produce results only by tree search,
without expansion for production of candidate set in the case of
a high minimum support threshold and performance elevation
according to fixed length. Fourth, the longer the sequence
length becomes, the better performance it shows in comparison
with any other algorithms. As a result, it can be applied not
only to DNA sequence with a small number of
items(dimension) but also amino acid sequence with a large
number of items, and other multi-dimensional sequence data.

V. CONCLUSION

In this paper, we have proposed an algorithm to quickly and
effectively process frequent maximal contiguous sequences,
which are  considered as very important in
bioinformatics. Compared with the existing algorithms, the
proposed method has improved the retrieval performance by
greatly reducing the frequency of database accesses and
removing the process of additional data production. In future
research, we will optimize the proposed algorithm by
considering a variety of environments with different parameters,
such as the level of tree, various minimum support threshold,
various lengths of sequence data and multi-dimensional
sequence data, etc.
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