• 제목/요약/키워드: sequences in Hilbert space

검색결과 21건 처리시간 0.021초

MULTIPLIERS FOR OPERATOR-VALUED BESSEL SEQUENCES AND GENERALIZED HILBERT-SCHMIDT CLASSES

  • KRISHNA, K. MAHESH;JOHNSON, P. SAM;MOHAPATRA, R.N.
    • Journal of applied mathematics & informatics
    • /
    • 제40권1_2호
    • /
    • pp.153-171
    • /
    • 2022
  • In 1960, Schatten studied operators of the form $\sum_{n=1}^{{\infty}}\;{\lambda}_n(x_n{\otimes}{\bar{y_n}})$, where {xn}n and {yn}n are orthonormal sequences in a Hilbert space, and {λn}n ∈ ℓ(ℕ). Balazs generalized some of the results of Schatten in 2007. In this paper, we further generalize results of Balazs by studying the operators of the form $\sum_{n=1}^{{\infty}}\;{\lambda}_n(A^*_nx_n{\otimes}{\bar{B^*_ny_n}})$, where {An}n and {Bn}n are operator-valued Bessel sequences, {xn}n and {yn}n are sequences in the Hilbert space such that {║xn║║yn║}n ∈ ℓ(ℕ). We also generalize the class of Hilbert-Schmidt operators studied by Balazs.

ON THE LINEAR EQUIVALENCE OF SEQUENCES IN HILBERT SPACES

  • TARIQ QAWASMEH;RAED HATAMLEH;BELAL BATIHA;AHMED SALEM HEILAT
    • Journal of applied mathematics & informatics
    • /
    • 제42권2호
    • /
    • pp.237-243
    • /
    • 2024
  • A similarity transformation of a solution of the Cauchy problem for the linear difference equation in Hilbert space has been studied. In this manuscript, we obtain necessary and sufficient conditions for linear equivalence of the discrete semigroup of operators, generated by the solution of the difference equation utilizing four Canonical semigroups.

ON COMPLETE CONVERGENCE FOR WEIGHTED SUMS OF COORDINATEWISE NEGATIVELY ASSOCIATED RANDOM VECTORS IN HILBERT SPACES

  • Anh, Vu Thi Ngoc;Hien, Nguyen Thi Thanh
    • 대한수학회보
    • /
    • 제59권4호
    • /
    • pp.879-895
    • /
    • 2022
  • This paper establishes the Baum-Katz type theorem and the Marcinkiewicz-Zymund type strong law of large numbers for sequences of coordinatewise negatively associated and identically distributed random vectors {X, Xn, n ≥ 1} taking values in a Hilbert space H with general normalizing constants $b_n=n^{\alpha}{\tilde{L}}(n^{\alpha})$, where ${\tilde{L}}({\cdot})$ is the de Bruijn conjugate of a slowly varying function L(·). The main result extends and unifies many results in the literature. The sharpness of the result is illustrated by two examples.

ON SOLVABILITY OF GENERALIZED NONLINEAR VARIATIONAL-LIKE INEQUALITIES

  • Zhang, Lili;Liu, Zeqing;Kang, Shin-Min
    • 대한수학회지
    • /
    • 제45권1호
    • /
    • pp.163-176
    • /
    • 2008
  • In this paper, we introduce and study a new class of generalized nonlinear variational-like inequalities. By employing the auxiliary principle technique we suggest an iterative algorithm to compute approximate solutions of the generalized nonlinear variational-like inequalities. We discuss the convergence of the iterative sequences generated by the algorithm in Banach spaces and prove the existence of solutions and convergence of the algorithm for the generalized nonlinear variational-like inequalities in Hilbert spaces, respectively. Our results extend, improve and unify several known results due to Ding, Liu et al, and Zeng, and others.

A GENERAL VISCOSITY APPROXIMATION METHOD OF FIXED POINT SOLUTIONS OF VARIATIONAL INEQUALITIES FOR NONEXPANSIVE SEMIGROUPS IN HILBERT SPACES

  • Plubtieng, Somyot;Wangkeeree, Rattanaporn
    • 대한수학회보
    • /
    • 제45권4호
    • /
    • pp.717-728
    • /
    • 2008
  • Let H be a real Hilbert space and S = {T(s) : $0\;{\leq}\;s\;<\;{\infty}$} be a nonexpansive semigroup on H such that $F(S)\;{\neq}\;{\emptyset}$ For a contraction f with coefficient 0 < $\alpha$ < 1, a strongly positive bounded linear operator A with coefficient $\bar{\gamma}$ > 0. Let 0 < $\gamma$ < $\frac{\bar{\gamma}}{\alpha}$. It is proved that the sequences {$x_t$} and {$x_n$} generated by the iterative method $$x_t\;=\;t{\gamma}f(x_t)\;+\;(I\;-\;tA){\frac{1}{{\lambda}_t}}\;{\int_0}^{{\lambda}_t}\;T(s){x_t}ds,$$ and $$x_{n+1}\;=\;{\alpha}_n{\gamma}f(x_n)\;+\;(I\;-\;{\alpha}_nA)\frac{1}{t_n}\;{\int_0}^{t_n}\;T(s){x_n}ds,$$ where {t}, {${\alpha}_n$} $\subset$ (0, 1) and {${\lambda}_t$}, {$t_n$} are positive real divergent sequences, converges strongly to a common fixed point $\tilde{x}\;{\in}\;F(S)$ which solves the variational inequality $\langle({\gamma}f\;-\;A)\tilde{x},\;x\;-\;\tilde{x}{\rangle}\;{\leq}\;0$ for $x\;{\in}\;F(S)$.

Weak and Strong Convergence of Hybrid Subgradient Method for Pseudomonotone Equilibrium Problems and Nonspreading-Type Mappings in Hilbert Spaces

  • Sriprad, Wanna;Srisawat, Somnuk
    • Kyungpook Mathematical Journal
    • /
    • 제59권1호
    • /
    • pp.83-99
    • /
    • 2019
  • In this paper, we introduce a hybrid subgradient method for finding an element common to both the solution set of a class of pseudomonotone equilibrium problems, and the set of fixed points of a finite family of ${\kappa}$-strictly presudononspreading mappings in a real Hilbert space. We establish some weak and strong convergence theorems of the sequences generated by our iterative method under some suitable conditions. These convergence theorems are investigated without the Lipschitz condition for bifunctions. Our results complement many known recent results in the literature.

A NEW METHOD FOR A FINITE FAMILY OF PSEUDOCONTRACTIONS AND EQUILIBRIUM PROBLEMS

  • Anh, P.N.;Son, D.X.
    • Journal of applied mathematics & informatics
    • /
    • 제29권5_6호
    • /
    • pp.1179-1191
    • /
    • 2011
  • In this paper, we introduce a new iterative scheme for finding a common element of the set of fixed points of a finite family of strict pseudocontractions and the solution set of pseudomonotone and Lipschitz-type continuous equilibrium problems. The scheme is based on the idea of extragradient methods and fixed point iteration methods. We show that the iterative sequences generated by this algorithm converge strongly to the common element in a real Hilbert space.

FIXED POINT SOLUTION METHODS FOR SOLVING EQUILIBRIUM PROBLEMS

  • Anh, Pham Ngoc;Hien, Nguyen Duc
    • 대한수학회보
    • /
    • 제51권2호
    • /
    • pp.479-499
    • /
    • 2014
  • In this paper, we propose new iteration methods for finding a common point of the solution set of a pseudomonotone equilibrium problem and the solution set of a monotone equilibrium problem. The methods are based on both the extragradient-type method and the viscosity approximation method. We obtain weak convergence theorems for the sequences generated by these methods in a real Hilbert space.