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Abstract. In this paper, we introduce a hybrid subgradient method for finding an ele-

ment common to both the solution set of a class of pseudomonotone equilibrium problems,

and the set of fixed points of a finite family of κ-strictly presudononspreading mappings

in a real Hilbert space. We establish some weak and strong convergence theorems of the

sequences generated by our iterative method under some suitable conditions. These con-

vergence theorems are investigated without the Lipschitz condition for bifunctions. Our

results complement many known recent results in the literature.

1. Introduction

Let H be a real Hilbert space in which the inner product and norm are denoted by
〈·, ·〉 and ‖ · ‖, respectively. Let C be a nonempty closed convex subset of H. Let
T : C → C be a mapping. A point x ∈ C is called a fixed point of T if Tx = x and
we denote the set of fixed points of T by F (T ). Recall that a mapping T : C → C
is said to be nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖, for allx, y ∈ C,

and it is said to be quasi-nonexpansive if F (T ) 6= ∅ and

‖Tx− Ty‖ ≤ ‖x− y‖, for allx ∈ C, and y ∈ F (T ).
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A mapping T : C → C is said to be a strict pseudocontraction if there exists a
constant k ∈ [0, 1) such that

‖Tx− Ty‖2 ≤ ‖x− y‖2 + k‖(I − T )x− (I − T )y‖2, ∀x, y ∈ C,

where I is the identity mapping on H. If k = 0, then T is nonexpansive on C.
In 2008, Kohsaka and Takahashi [15] defined a mapping T in a in Hilbert spaces

H to be nonspreading if

2‖Tx− Ty‖2 ≤ ‖Tx− y‖2 + ‖Ty − x‖2, for all x, y ∈ C.

Following the terminology of Browder-Petryshyn [10], Osilike and Isiogugu [17]
called a mapping T of C into itself κ-strictly pseudononspreading if there exists
κ ∈ [0, 1) such that

‖Tx−Ty‖2 ≤ ‖x−y‖2 +2〈x−Tx, y−Ty〉+κ‖x−Tx− (y−Ty)‖2, for all x, y ∈ C.

Clearly, every nonspreading mapping is κ-strictly pseudononspreading but the con-
verse is not true; see [17]. We note that the class of strict pseudocontraction map-
pings and the class of κ-strictly pseudononspreading mappings are independent.

In 2010, Kurokawa and Takahashi [16] obtained a weak mean ergodic theorem
of Baillon’s type [7] for nonspreading mappings in Hilbert spaces. Furthermore,
using the idea of mean convergence in Hilbert spaces, they also proved a strong
convergence theorem of Halpern’s type [12] for this class of mappings. After that,
in 2011, Osilike and Isiogugu [17] introduced the concept of κ-strictly pseudonon-
spreading mappings and they proved a weak mean convergence theorem of Baillon’s
type similar to [16]. They further proved a strong convergence theorem using the
idea of mean convergence. This theorem extended and improved the main theorems
of [16] and gave an affirmative answer to an open problem posed by Kurokawa and
Takahashi [16] for the case when the mapping T is averaged. In 2013 Kangtun-
yakarn [14] proposed a new technique, using the projection method, for κ-strictly
pseudononspreading mappings. He obtained a strong convergence theorem for find-
ing the common element of the set of solutions of a variational inequality, and the
set of fixed points of κ-strictly pseudononspreading mappings in a real Hilbert space.

On the other hand, let F be a bifunction of C × C into R, where R is the set
of real numbers. The equilibrium problem for F : C ×C → R is to find x ∈ C such
that

(1.1) F (x, y) ≥ 0 for all y ∈ C.

The set of solutions of (1.1) is denoted by EP (F,C). It is well known that there are
several problems, such as complementarity problems, minimax problems, the Nash
equilibrium problem in noncooperative games, fixed point problems, optimization
problems, that can be written in the form of an EP . In other words, the EP
is a unifying model for several problems arising in physics, engineering, science,
optimization, economics, etc.; see [6, 8, 11] and the references therein.
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In recent years the problem of finding an element common to the set of solutions
of a equilibrium problems, and the set of fixed points of nonlinear mappings, has
become a fascinating subject, and various methods have been developed by many
authors for solving this problem (see [1, 4, 5, 20]). Most of all the existing algorithms
for this problem are based on applying the proximal point method to the equilibrium
problem EP (F,C), and using a Mann’s iteration to the fixed point problems of
nonexpansive mappings. The convergence analysis has been considered when the
bifunction F is monotone. This is because the proximal point method is not valid
when the underlying operator F is pseudomonotone.

Recently, Anh [2] introduced a new hybrid extragradient iteration method for
finding a element common to the set of fixed points of a nonexpansive mapping and
the set of solutions of equilibrium problems for a pseudomonotone bifunctions. In
this algorithm the equilibrium bifunction is not required to satisfy any monotonicity
property, but it must satisfy a Lipschitz-type continuous bifunction i.e. there are
two Lipschitz constants c1 > 0 and c2 > 0 such that

(1.2) f(x, y) + f(y, z) ≥ f(x, z)− c1‖x− y‖2 − c2‖y − z‖2, ∀x, y, z ∈ C.

They obtained strongly convergent theorems for the sequences generated by these
processes in a real Hilbert space.

Anh and Muu [3] reiterated that the Lipschitz-type condition (1.2) is not in
general satisfied, and if it is, that finding the constants c1 and c2 is not easy. They
further observed that solving strongly convex programs is also difficult except in
special cases when C has a simple structure. They introduced and studied a new
algorithm, which is called a hybrid subgradient algorithm for finding a common
point in the set of fixed points of nonexpansive mappings and the solution set of a
class of pseudomonotone equilibrium problems in a real Hilbert space. The proposed
algorithm is a combination of the well-known Mann’s iterative scheme for fixed point
and the projection method for equilibrium problems. Furthermore, the proposed
algorithm uses only one projection and does not require any Lipschitz condition for
the bifunctions. To be more precise, they proposed the following iterative method:

(1.3)


x0 ∈ C,
wn ∈ ∂εnF (xn, ·)xn,
un = PC(xn − γnwn), γn = βn

max{σn,‖wn‖} ,

xn+1 = αnxn + (1− αn)Tun, for each n = 1, 2, 3, ...,

where ∂εF (x, ·)(x) stands for ε-subdifferential of the convex function F (x, ·) at x
and {εn}, {γn}, {βn}, {σn}, and {αn} were chosen appropriately. Under certain
conditions, they prove that {xn} converges strongly to a common point in the set
of a class of pseudomonotone equilibrium problems and the set of fixed points of
nonexpansive mapping. Using the idea of Anh and Muu [3], Thailert et al. [21]
proposed a new algorithm for finding a common point in the solution set of a class
of pseudomonotone equilibrium problems and the set of common fixed points of a
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family of strict pseudocontraction mappings in a real Hilbert space. Then Thailert
et al. [22] introduced new general iterative methods for finding a common element in
the solution set of pseudomonotone equilibrium problems and the set of fixed points
of nonexpansive mappings which is a solution of a certain optimization problem
related to a strongly positive linear operator. Under suitable control conditions,
They proved the strong convergence theorems of such iterative schemes in a real
Hilbert space.

In this paper, motivated by Anh and Muu [3], Kangtunyakarn [14], and other
research going on in this direction, we proposed a hybrid subgradient method for the
pseudomonotone equilibrium problem and the finite family of κ-strictly pseudonon-
spreading mapping in a real Hilbert space. The weak and strong convergence of the
proposed methods is investigated under certain assumptions. Our results improve
and extend many recent results in the literature.

2. Preliminaries

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖, respec-
tively. It is well-known that for all x, y, z ∈ H and α, β, γ ∈ [0, 1], with α+β+γ = 1
there holds

(2.1) ‖x− y‖2 = ‖x‖2 − ‖y‖2 − 2〈x− y, y〉,

and

(2.2) ‖ αx+βy+γz ‖2= α ‖ x ‖2 +β ‖ y ‖2 +γ‖z‖2−αβ ‖ x− y ‖2 −βγ‖y− z‖2.

Let C be a nonempty closed convex subset of H. Then, for any x ∈ H, there exists
a unique nearest point of C, denoted by PCx, such that ‖ x− PCx ‖≤‖ x− y ‖ for
all y ∈ C. Such a PC is called the metric projection from H into C. We know that
PC is nonexpansive. It is also known that, PCx ∈ C and

(2.3) 〈x− PCx, PCx− z〉 ≥ 0, for all x ∈ H and z ∈ C.

It is easy to see that (2.3) equivalent to

(2.4) ‖x− z‖2 ≥ ‖x− PCx‖2 + ‖z − PCx‖2, for all x ∈ H and z ∈ C.

Lemma 2.1.([19]) Let H be a real Hilbert space, let C be a nonempty closed convex
subset of H and let A be a mapping of C into H. Let u ∈ C. Then for λ > 0,

u ∈ V I(C,A)⇔ u = PC(I − λA)u,

where PC is the metric projection of H onto C.

Recall that a bifunction F : C × C → R is said to be
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(i) η-strongly monotone if there exists a number η > 0 such that

F (x, y) + F (y, x) ≤ −η‖x− y‖2, for all x, y ∈ C,

(ii) monotone on C if

F (x, y) + F (y, x) ≤ 0, for all x, y ∈ C,

(iii) pseudomonotone on C with respect to x ∈ C if

F (x, y) ≥ 0 implies F (y, x) ≤ 0, for all y ∈ C.

It is clear that (i) ⇒ (ii) ⇒ (iii), for every x ∈ C. Moreover, F is said to be
pseudomonotone on C with respect to A ⊆ C, if it is pseudomonotone on C with
respect to every x ∈ A. When A ≡ C, F is called pseudomonotone on C.

The following example, taken from [18], shows that a bifunction may not be
pseudomonotone on C, but yet is pseudomonotone on C with respect to the solution
set of the equilibrium problem defined by F and C:

F (x, y) := 2y|x|(y − x) + xy|y − x|, for all x, y ∈ R, C := [−1, 1].

Clearly, EP (F ) = {0}. Since F (y, 0) = 0 for every y ∈ C, this bifunction is
pseudomonotone on C with respect to the solution x∗ = 0, However, F is not
pseudomonotone on C. In fact, both F (−0.5, 0.5) = 0.25 > 0 and F (0.5,−0.5) =
0.25 > 0.

For solving the equilibrium problem (1.1), let us assume that ∆ is an open
convex set containing C and the bifunction F : ∆ ×∆ → R satisfies the following
assumptions:

(A1) F (x, x) = 0 for all x ∈ C and F (x, ·) is convex and lower semicontinuous on
C;

(A2) for each y ∈ C, F (·, y) is weakly upper semicontinuous on the open set ∆;

(A3) F is pseudomonotone on C with respect to EP (F,C) and satisfies the strict
paramonotonicity property, i.e., F (y, x) = 0 for x ∈ EP (F,C) and y ∈ C
implies y ∈ EP (F,C);

(A4) if {xn} ⊆ C is bounded and εn → 0 as n → ∞, then the sequence {wn}
with wn ∈ ∂nF (xn, ·)xn is bounded, where ∂εF (x, ·)x stands for the ε-
subdifferential of the convex function F (x, ·) at x.

The following idea of the ε-subdierential of convex functions can be found in
the work of Bronsted and Rockafellar [9] but the theory of ε-subdierential calculus
was given by Hiriart-Urruty [13].

Definition 2.2. Consider a proper convex function φ : C → R. For a given ε > 0,
the ε-subdierential of φ at x0 ∈ Domφ is given by

∂εφ(x0) = {x ∈ C : φ(y)− φ(x0) ≥ 〈x, y − x0〉 − ε, ∀y ∈ C}.
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Remark 2.3. It is known that if the function φ is proper lower semicontinuous
convex, then for every x ∈ Domφ, the ε-subdierential ∂εφ(x) is a nonempty closed
convex set (see [13]).

Next, throughout this paper, weak and strong convergence of a sequence {xn}
in H to x are denoted by xn ⇀ x and xn → x, respectively. In order to prove our
main results, we need the following lemmas.

Lemma 2.4.([17]) Let C be a nonempty closed convex subset of a real Hilbert space
H, and let T : C → C be a κ-strictly pseudonospreading mapping. If F (T ) 6= ∅,
then it is closed and convex.

Remark 2.5. If T : C → C is a κ-strictly pseudononspreading mapping with
F (T ) 6= ∅, then from Lemma 2.8 in [14] and Lemma 2.1, we have F (T ) = V I(C, (I−
T )) = F (PC(I − λ(I − T ))), for all λ > 0.

Lemma 2.6. Let H be a real Hilbert space and C be a nonempty closed convex
subset of H. For every i = 1, 2, ..., N, let Ti : C → C be a finite family of κi-strictly
pseudononspreading mappings with

⋂N
i=1 F (Ti) 6= ∅. Let {a1, a2, ..., an} ⊂ (0, 1)

with ΣNi=1ai = 1, let κ̄ = max{κ1, κ2, ..., κN} and let λ ∈ (0, 1− κ̄). Then

(i)
⋂N
i=1 F (Ti) = F (ΣNi=1aiPC(I − λ(I − Ti))).

(ii) ‖ΣNi=1aiPC(I−λ(I−Ti))x−y‖2 ≤ ‖x−y‖2, for all x ∈ C and y ∈
⋂N
i=1 F (Ti),

i.e. ΣNi=1aiPC(I − λ(I − Ti)) is quasi-nonexpansive.

Proof. (i) It easy to see that
⋂N
i=1 F (Ti) ⊆ F (ΣNi=1aiPC(I − λ(I − Ti))). Let x ∈

F (ΣNi=1aiPC(I−λ(I−Ti))) and let x∗ ∈
⋂N
i=1 F (Ti) ⊆ F (ΣNi=1aiPC(I−λ(I−Ti))).

Note that for every i = 1, 2, 3, ..., N we have

‖PC(I − λ(I − Ti))x− x∗‖2 ≤ ‖x− x∗ − λ(I − Ti)‖2

= ‖x− x∗‖2 − 2λ〈x− x∗, (I − Ti)x〉
+ λ2‖(I − Ti)x‖2.(2.5)

Put Ai = I − Ti, for all i = 1, 2, ..., N, we have Ti = I −Ai and

‖Tix− Tix∗‖2 = ‖(I −Ai)x− (I −Ai)x∗‖2

= ‖(x− x∗)−Aix‖2

= ‖x− x∗‖2 − 2〈x− x∗, Aix〉+ ‖Aix‖2

≤ ‖x− x∗‖2 + κi‖(I − Ti)x− (I − Ti)x∗‖2 + 2〈x− Tix, x∗ − Tix∗〉
= ‖x− x∗‖2 + κi‖(I − Ti)x‖2,(2.6)

which implies that

(1− κi)‖(I − Ti)x‖2 ≤ 2〈x− x∗, Aix〉, for all i = 1, 2, 3, ..., N
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From (2.5) and (2.6), we have

‖PC(I − λ(I − Ti))x− x∗‖2 ≤ ‖x− x∗‖2 − 2λ〈x− x∗, (I − Ti)x〉
+ λ2‖(I − Ti)x‖2

≤ ‖x− x∗‖2 − λ(1− κi)‖(I − Ti)x‖2

+ λ2‖(I − Ti)x‖2

= ‖x− x∗‖2 − λ[(1− κi)− λ]‖(I − Ti)x‖2

≤ ‖x− x∗‖2,(2.7)

for all i = 1, 2, 3, . . . , N .
From the definition of x and (2.7), we have

‖x− x∗‖2 = ‖ΣNi=1aiPC(I − λ(I − Ti))x− x∗‖2

= a1‖PC(I − λ(I − T1))x− x∗‖2 + a2‖PC(I − λ(I − T2))x− x∗‖2 + · · ·
+ aN‖PC(I − λ(I − TN ))x− x∗‖2 − a1a2‖PC(I − λ(I − T1))x

− PC(I − λ(I − T2))x‖2 − a2a3‖PC(I − λ(I − T2))x−
PC(I − λ(I − T3))x‖2 − · · · − aN−1aN‖PC(I − λ(I − TN−1))x−
PC(I − λ(I − TN ))x‖2

≤ ‖x− x∗‖2 − a1a2‖PC(I − λ(I − T1))x− PC(I − λ(I − T2))x‖2

− a2a3‖PC(I − λ(I − T2))x− PC(I − λ(I − T3))x‖2 − · · ·
− aN−1aN‖PC(I − λ(I − TN−1))x− PC(I − λ(I − TN ))x‖2.

This implies that

PC(I − λ(I − T1))x = PC(I − λ(I − T2))x = · · · = PC(I − λ(I − TN ))x

Since x ∈ F (ΣNi=1aiPC(I − λ(I − Ti))), we get that x = PC(I − λ(I − Ti))x, for all
i = 1, 2, 3, ..., N From Remark 2.5, we have x ∈ F (Ti) , for all i = 1, 2, 3, ..., N. That

is x ∈
⋂N
i=1 F (Ti). Hence F (ΣNi=1aiPC(I − λ(I − Ti))) ⊆

⋂N
i=1 F (Ti).

(ii) Let x ∈ C and y ∈
⋂N
i=1 F (Ti) = F (ΣNi=1aiPC(I − λ(I − Ti)))

As the same argument as in (i), we can show that

‖PC(I − λ(I − Ti))x− y‖2 ≤ ‖x− y‖2,(2.8)

for all i = 1, 2, 3, ..., N . Thus

‖ΣNi=1aiPC(I − λ(I − Ti))x− y‖2 ≤ a1‖PC(I − λ(I − T1))x− y‖2

+ a2‖PC(I − λ(I − T2))x− y‖2 + · · ·
+ aN‖PC(I − λ(I − TN ))x− y‖2

≤ ΣNi=1ai‖x− y‖2 = ‖x− y‖2. 2(2.9)
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Lemma 2.7.([23]) Let {an} and {bn} be two sequences of nonnegative real numbers
such that

an+1 ≤ an + bn, n ≥ 1,

where
∑∞
n=0 bn <∞. Then the sequence {an} is convergent.

3. Weak Convergence Theorem

In this section, we prove weak convergence theorem for finding a common ele-
ment in the solution set of a class of pseudomonotone equilibrium problems and the
set of fixed points of a finite family of κ-strictly presudononspreading mappings in
a real Hilbert space.

Theorem 3.1. Let C be a closed convex subset of a real Hilbert space H and
F : C × C → R be a bifunction satisfying (A1)–(A4). Let {κ1, κ2, ..., κN} ⊂ [0, 1)
and {Ti}Ni=1 be a finite family of κi-strictly pseudononspreading mappings of C into

itself such that Ω :=
⋂N
i=1 F (Ti) ∩ EP (F,C) 6= ∅. Let x0 ∈ C and {xn} be a se-

quence generated by

(3.1)


x0 ∈ C,
wn ∈ ∂εnF (xn, ·)xn,
un = PC(xn − ρnwn), ρn = δn

max{σn,‖wn‖} ,

xn+1 = αnxn + βnΣNi=1aiPC(I − λin(I − Ti))xn + γnun, ∀n ∈ N,

where a, b, c, d, λ ∈ R, ai ∈ (0, 1), for all i = 1, 2, ..., N with ΣNi=1ai = 1,
{αn}, {βn}, {γn} ⊂ [0, 1] with αn + βn + γn = 1 and {δn}, {εn},{λin} ⊂ (0,∞)
satisfying the following conditions:

(i) 0 < λ ≤ λin ≤ min{1 − κ1, 1 − κ2, ..., 1 − κN} and Σ∞n=1λ
i
n < ∞ for all

i = 1, 2, ..., N ;

(ii) 0 < a < αn, βn, γn < b < 1;

(iii)
∑∞
n=0 δn =∞,

∑∞
n=0 δ

2
n <∞, and

∑∞
n=0 δnεn <∞.

Then the sequence {xn} converges weakly to x̄ ∈ Ω.

Proof. First, we will show that {xn} is bounded. Let p ∈ Ω. Then we have

‖un − p‖2 = ‖xn − p‖2 − ‖un − xn‖2 + 2〈xn − un, p− un〉
≤ ‖xn − p‖2 + 2〈xn − un, p− un〉.(3.2)

Since un = PC(xn − ρnwn) and p ∈ C, we get that

(3.3) 〈xn − un, p− un〉 ≤ ρn〈wn, p− un〉.
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Substuting (3.3) into (3.2), we have

‖un − p‖2 ≤ ‖xn − p‖2 + 2ρn〈wn, p− un〉
= ‖xn − p‖2 + 2ρn〈wn, p− xn〉+ 2ρn〈wn, xn − un〉
≤ ‖xn − p‖2 + 2ρn〈wn, p− xn〉+ 2ρn‖wn‖‖xn − un‖
≤ ‖xn − p‖2 + 2ρn〈wn, p− xn〉+ 2δn‖xn − un‖.(3.4)

By using un = PC(xn − ρnwn) and xn ∈ C again, we get

‖xn − un‖2 = 〈xn − un, xn − un〉
≤ ρn〈wn, xn − un〉
≤ ρn‖wn‖‖xn − un‖
≤ δn‖xn − un‖,(3.5)

which implies that

(3.6) ‖xn − un‖ ≤ δn.

By condition (iii), we have

(3.7) lim
n→∞

‖xn − un‖ = 0.

Combining (3.4) and (3.6), we obtain

(3.8) ‖un − p‖2 ≤ ‖xn − p‖2 + 2ρn〈wn, p− xn〉+ 2δ2
n.

Since wn ∈ ∂εnF (xn, ·)xn, p ∈ C and F (x, x) = 0 for each x ∈ C, we obtain that

〈wn, p− xn〉 ≤ F (xn, p)− F (xn, xn) + εn

= F (xn, p) + εn.(3.9)

Thus, it follows from (3.8) and (3.9) that

(3.10) ‖un − p‖2 ≤ ‖xn − p‖2 + 2ρnF (xn, p) + 2ρnεn + 2δ2
n.

Form Lemma 2.6 (ii), we have

(3.11) ‖ΣNi=1aiPC(I − λin(I − Ti))xn − p‖2 ≤ ‖xn − p‖2.

From (3.1), (3.10) and (3.11), we have

‖xn+1 − p‖2 = ‖αnxn + βnΣNi=1aiPC(I − λin(I − Ti))xn + γnun − p‖2

≤ αn‖xn − p‖2 + βn‖ΣNi=1aiPC(I − λin(I − Ti))xn − p‖2

+γn‖un − p‖2 − αnβn‖xn − ΣNi=1aiPC(I − λin(I − Ti))xn‖2

≤ αn‖xn − p‖2 + βn‖xn − p‖2 + γn

(
‖xn − p‖2 + 2ρnF (xn, p)

+2ρnεn + 2δ2
n

)
− αnβn‖xn − ΣNi=1aiPC(I − λin(I − Ti))xn‖2

= ‖xn − p‖2 + 2γnρnF (xn, p) + 2γnρnεn + 2γnδ
2
n

−αnβn‖xn − ΣNi=1aiPC(I − λin(I − Ti))xn‖2.(3.12)
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Since p ∈ EP (F,C) and F is pseudomonotone on F with respect to p, we get that
F (xn, p) ≤ 0 for all n ∈ N. Then from (3.12) it follows that

‖xn+1 − p‖2 ≤ ‖xn − p‖2 + 2γnρnεn + 2γnδ
2
n

−αnβn‖xn − ΣNi=1aiPC(I − λin(I − Ti))xn‖2

≤ ‖xn − p‖2 + 2γnρnεn + 2γnδ
2
n.(3.13)

Let ηn = 2γnρnεn + 2γnδ
2
n for all n ≥ 0. From condition (ii) and (iii), we get that

Σ∞n=0ηn = Σ∞n=0(2γnρnεn + 2γnδ
2
n) ≤ 2bΣ∞n=0ρnεn + 2bΣ∞n=0δ

2
n < +∞

Now applying Lemma 2.7 to (3.13), we obtain that the lim
n→∞

‖xn − p‖ exists, i.e.

lim
n→∞

‖xn − p‖ = ā for some ā ∈ C. Thus {xn} is bounded. Also, it easy to verify

that {un} and {ΣNi=1aiPC(I − λin(I − Ti))xn} are also bounded.
Next, we will show that lim sup

n→∞
F (xn, p) = 0 for any p ∈ Ω. Since F is pseu-

domonotone on C and F (p, xn) ≥ 0, we have −F (xn, p) ≥ 0. From (3.12) and
condition (ii), we have

2γnρn[−F (xn, p)] ≤ ‖xn − p‖2 − ‖xn+1 − p‖2

+2γnρnεn + 2γnδ
2
n

≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + 2bρnεn + 2bδ2
n.(3.14)

Summing up (3.14) for every n, we obtain

0 ≤ 2

∞∑
n=0

γnρn[−F (xn, p)]

≤ ‖x0 − p‖2 + 2b

∞∑
n=0

ρnεn + 2b

∞∑
n=0

δ2
n < +∞.(3.15)

By the assumption (A4), we can find a real number w such that ‖wn‖ ≤ w for every
n. Setting Γ := max{σ,w}, where σ is a real number such that 0 < σn < σ for
every n, it follows from (ii) that

0 ≤ 2a

Γ

∞∑
n=0

δn[−F (xn, p)](3.16)

≤ 2

∞∑
n=0

γnρn[−F (xn, p)] < +∞,(3.17)

which implies that

0 ≤
∞∑
n=0

δn[−F (xn, p)] < +∞.(3.18)
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Combining with −F (xn, p) ≥ 0 and
∑∞
n=0 δn = ∞, we can deduced that

lim sup
n→∞

F (xn, p) = 0 as desired.

Next, we will show that ωω(xn) ⊂ Ω, where ωω(xn) = {x ∈ H : xni
⇀ x for

some subsequence {xni} of {xn}}. In deed since {xn} is bounded and H is reflexive,
ωω(xn) is nonempty. Let x̄ ∈ ωω(xn). Then there exists subsequence {xni} of {xn}.
converging weakly to x̄, that is xni

⇀ x̄ as i → ∞. By the convexity, C is weakly
closed and hence x̄ ∈ C. Since F (·, p) is weakly upper semicontinuous for p ∈ Ω, we
obtain

F (x̄, p) ≥ lim sup
i→∞

F (xn, p)

= lim
i→∞

F (xni
, p)

= lim sup
n→∞

F (xn, p)

= 0.(3.19)

Since F is pseudomontone with respect to p and F (p, x̄) ≥ 0, we obtain F (x̄, p) ≤ 0.
Thus F (x̄, p) = 0. Furthermore, by assumption (A3), we get that x̄ ∈ EP (F,C).
On the other hand, from (3.13) and conditions (ii)–(iii), we have

αnβn‖xn − ΣNi=1aiPC(I−λin(I − Ti))xn‖2

≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + 2γnρnεn + 2γnδ
2
n

≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + 2bρnεn + 2bδ2
n

(3.20)

taking the limit as n→∞ yields

(3.21) lim
n→∞

‖xn − ΣNi=1aiPC(I − λin(I − Ti))xn‖ = 0.

Now, we will show that x̄ ∈
⋂N
i=1 F (Ti). Assume that x̄ /∈

⋂N
i=1 F (Ti). By Lemma

2.6, we have x̄ /∈ F (ΣNi=1aiPC(I − λn(I − Ti))). From the Opial’s condition, (3.21)
and condition (i), we can write

lim inf
i→∞

‖xni − x̄‖ < lim inf
i→∞

‖xni − ΣN
i=1aiPC(I − λi

n(I − Ti))x̄‖

≤ lim inf
i→∞

(
‖xni − ΣN

i=1aiPC(I − λi
n(I − Ti))xni‖

+ ‖ΣN
i=1aiPC(I − λi

n(I − Ti))xni − ΣN
i=1aiPC(I − λi

n(I − Ti))x̄‖
)

≤ lim inf
i→∞

(
‖xni − x̄‖+ ΣN

i=1aiλ
i
n‖(I − Ti)xni − (I − Ti)x̄‖

)
≤ lim inf

i→∞
‖xni − x̄‖.

This is a contradiction. Then x̄ ∈
⋂N
i=1 F (Ti). Thus x̄ ∈ EP (F,C) ∩ F (T ) = Ω

and so ωω(xn) ⊂ Ω.
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Finally, we prove that {xn} converge weakly to an element of Ω. It’s sufficient
to show that ωω(xn) is a single point set. Taking z1, z2 ∈ ωω(xn) arbitrarily, and
let {xnk

} and {xnm
} be subsequence of {xn} such that xnk

⇀ z1 and xnm
⇀ z2

respectively. Since lim
n→∞

‖xn − p‖ exists for all p ∈ Ω and z1, z2 ∈ Ω, we get that

lim
n→∞

‖xn − z1‖ and lim
n→∞

‖xn − z2‖ exist. Now, assume that z1 6= z2, then by the

Opial’s condition,

lim
n→∞

‖xn − z1‖ = lim
k→∞

‖xnk
− z1‖

< lim
k→∞

‖xnk
− z2‖

= lim
n→∞

‖xn − z2‖

= lim
m→∞

‖xnm
− z2‖

< lim
m→∞

‖xnm
− z1‖

= lim
n→∞

‖xn − z1‖,(3.22)

which is a contradiction. Thus z1 = z2. This show that ωω(xn) is single point set.
i.e. xn ⇀ x̄. This completes the proof. 2

If we set κi = 0 for all i = 1, 2, ..., N then we get the following Corollary.

Corollary 3.2. Let C be a closed convex subset of a real Hilbert space H and
F : C ×C → R be a bifunction satisfying (A1)–(A4). Let {Ti}Ni=1 be a finite family

of nonspreading mappings of C into itself such that Ω :=
⋂N
i=1 F (Ti)∩EP (F,C) 6= ∅.

Let x0 ∈ C and {xn} be a sequence generated by

(3.23)


x0 ∈ C,
wn ∈ ∂εnF (xn, ·)xn,
un = PC(xn − ρnwn), ρn = δn

max{σn,‖wn‖} ,

xn+1 = αnxn + βnΣNi=1aiPC(I − λin(I − Ti))xn + γnun, ∀n ∈ N,

where a, b, c, d, λ ∈ R, ai ∈ (0, 1), for all i = 1, 2, ..., N with ΣNi=1ai = 1,
{αn}, {βn}, {γn} ⊂ [0, 1] with αn + βn + γn = 1 and {δn}, {εn},{λin} ⊂ (0,∞)
satisfying the following conditions:

(i) 0 < λ ≤ λin < 1 and Σ∞n=1λ
i
n <∞ for all i = 1, 2, ..., N ;

(ii) 0 < a < αn, βn, γn < b < 1;

(ii)
∑∞
n=0 δn =∞,

∑∞
n=0 δ

2
n <∞, and

∑∞
n=0 δnεn <∞.

Then the sequence {xn} converges weakly to x̄ ∈ Ω.
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4. Strong Convergence Theorem

In this section, to obtain strong convergence result, we add the control condition

lim
n→∞

αn =
1

2
, and then we get the strong convergence theorem for finding a common

element in the solution set of a class of pseudomonotone equilibrium problems and
the set of fixed points of a finite family of κ-strictly presudononspreading mappings
in a real Hilbert space.

Theorem 4.1. Let C be a closed convex subset of a real Hilbert space H and
F : C × C → R be a bifunction satisfying (A1)–(A4). Let {κ1, κ2, ..., κN} ⊂ [0, 1)
and {Ti}Ni=1 be a finite family of κi-strictly pseudononspreading mappings of C into

itself such that Ω :=
⋂N
i=1 F (Ti) ∩ EP (F,C) 6= ∅. Let x0 ∈ C and {xn} be a se-

quence generated by

(4.1)


x0 ∈ C,
wn ∈ ∂εnF (xn, ·)xn,
un = PC(xn − ρnwn), ρn = δn

max{σn,‖wn‖} ,

xn+1 = αnxn + βnΣNi=1aiPC(I − λin(I − Ti))xn + γnun, ∀n ∈ N,

where a, b, c, d, λ ∈ R, ai ∈ (0, 1), for all i = 1, 2, ..., N with ΣNi=1ai = 1,
{αn}, {βn}, {γn} ⊂ [0, 1] with αn + βn + γn = 1 and {δn}, {εn},{λin} ⊂ (0,∞)
satisfying the following conditions:

(i) 0 < λ ≤ λin ≤ min{1 − κ1, 1 − κ2, ..., 1 − κN} and Σ∞n=1λ
i
n < ∞ for all

i = 1, 2, ..., N ;

(ii) 0 < a < αn, βn, γn < b < 1 and lim
n→∞

αn =
1

2
;

(iii)
∑∞
n=0 δn =∞,

∑∞
n=0 δ

2
n <∞, and

∑∞
n=0 δnεn <∞.

Then the sequence {xn} converges strongly to x̄ ∈ Ω.

Proof. By a similar argument to the proof of Theorem 3.1 and (2.4), we have

‖ΣNi=1aiPC(I − λin(I − Ti))xn − PΩ(xn)‖2 ≤ ‖ΣNi=1aiPC(I − λin(I − Ti))xn − xn‖2

−‖xn − PΩ(xn)‖2

and

(4.2) ‖un − PΩ(xn)‖2 ≤ ‖un − xn‖2 − ‖xn − PΩ(xn)‖2.

It follows from (4.2) and condition (ii) that
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‖xn+1 − PΩ(xn+1)‖2

≤ ‖αnxn + βnΣNi=1aiPC(I − λin(I − Ti))xn + γnun − PΩ(xn)‖2

≤ αn‖xn − PΩ(xn)‖2 + βn‖ΣNi=1aiPC(I − λin(I − Ti))xn − PΩ(xn))‖2

+γn‖un − PΩ(xn)‖2

≤ αn‖xn − PΩ(xn)‖2 + βn

(
‖ΣNi=1aiPC(I − λin(I − Ti))xn − xn‖2

−‖xn − PΩ(xn)‖2
)

+ γn

(
‖un − xn‖2 − ‖xn − PΩ(xn)‖2

)
= (αn − (βn + γn))‖xn − PΩ(xn)‖2 + βn‖ΣNi=1aiPC(I − λin(I − Ti))xn − xn‖2

+γn‖un − xn‖2.
≤ (2αn − 1)‖xn − PΩ(xn)‖2 + b‖ΣNi=1aiPC(I − λin(I − Ti))xn − xn‖2

+b‖un − xn‖2.

Combining (3.7), (3.21), conditions (ii)–(iii), and the boundedness of the sequence
{xn − PΩ(xn)}, we obtain

(4.3) lim
n→∞

‖xn+1 − PΩ(xn+1)‖ = 0

Since Ω is convex, for all m > n, we have 1
2 (PΩ(xm) + PΩ(xn)) ∈ Ω, and therefore

‖PΩ(xm)− PΩ(xn)‖2 = 2‖xm − PΩ(xm)‖2 + 2‖xm − PΩ(xn)‖2

−4‖xm −
1

2
(PΩ(xm) + PΩ(xn))‖2

≤ 2‖xm − PΩ(xm)‖2 + 2‖xm − PΩ(xn)‖2

−4‖xm − PΩ(xm)‖2

= 2‖xm − PΩ(xn)‖2 − 2‖xm − PΩ(xm)‖2.(4.4)

Using (3.13) with p = PΩ(xn), we have

‖xm − PΩ(xn)‖2 ≤ ‖xm−1 − PΩ(xn)‖2 + ηm−1

≤ ‖xm−2 − PΩ(xn)‖2 + ηm−1 + ηm−2

≤ ...

≤ ‖xn − PΩ(xn)‖2 +

m−1∑
j=n

ηj ,(4.5)

where ηj = 2γjρjεj + 2γjδ
2
j . It follows from (4.4) and (4.5) that

(4.6) ‖PΩ(xm)− PΩ(xn)‖2 ≤ 2‖xn − PΩ(xn)‖2 + 2

m−1∑
j=n

ηj − 2‖xm − PΩ(xm)‖2.
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Together with (4.3) and
∑∞
j=0 ηj < +∞, this implies that {PΩ(xn)} is a Cauchy

sequence, Hence {PΩ(xn)} strongly converges to some point x∗ ∈ Ω. Moreover, we
obtain

(4.7) x∗ = lim
i→∞

PΩ(xni) = PΩ(x̄) = x̄,

which implies that PΩ(xi) → x∗ = x̄ ∈ Ω. Then from (4.3) and (4.7), we can
conclude that xn → x̄. This completes the proof. 2

If we set κi = 0 for all i = 1, 2, ..., N then we get the following Corollary.

Corollary 4.2. Let C be a closed convex subset of a real Hilbert space H and
F : C ×C → R be a bifunction satisfying (A1)–(A4). Let {Ti}Ni=1 be a finite family

of nonspreading mappings of C into itself such that Ω :=
⋂N
i=1 F (Ti)∩EP (F,C) 6= ∅.

Let x0 ∈ C and {xn} be a sequence generated by

(4.8)


x0 ∈ C,
wn ∈ ∂εnF (xn, ·)xn,
un = PC(xn − ρnwn), ρn = δn

max{σn,‖wn‖} ,

xn+1 = αnxn + βnΣNi=1aiPC(I − λin(I − Ti))xn + γnun, ∀n ∈ N,

where a, b, c, d, λ ∈ R, ai ∈ (0, 1), for all i = 1, 2, ..., N with ΣNi=1ai = 1,
{αn}, {βn}, {γn} ⊂ [0, 1] with αn + βn + γn = 1 and {δn}, {εn},{λin} ⊂ (0,∞)
satisfying the following conditions:

(i) 0 < λ ≤ λin < 1 and Σ∞n=1λ
i
n <∞ for all i = 1, 2, ..., N ;

(ii) 0 < a < αn, βn, γn < b < 1 and lim
n→∞

αn =
1

2
;

(iii)
∑∞
n=0 δn =∞,

∑∞
n=0 δ

2
n <∞, and

∑∞
n=0 δnεn <∞.

Then the sequence {xn} converges weakly to x̄ ∈ Ω.
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