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ON SOLVABILITY OF GENERALIZED NONLINEAR
VARIATIONAL-LIKE INEQUALITIES

Lint ZHANG, ZEQING Liu, AND SHIN MIN KANG

ABSTRACT. In this paper, we introduce and study a new class of gener-
alized nonlinear variational-like inequalities. By employing the auxiliary
principle technique we suggest an iterative algorithm to compute approx-
imate solutions of the generalized nonlinear variational-like inequalities.
We discuss the convergence of the iterative sequences generated by the
algorithm in Banach spaces and prove the existence of solutions and con-
vergence of the algorithm for the generalized nonlinear variational-like
inequalities in Hilbert spaces, respectively. Our results extend, improve
and unify several known results due to Ding, Liu et al, and Zeng, and
others.

1. Imtroduction

Variational inequality theory has become a rich source of inspiration in
pure and applied mathematics, and variational inequalities have been used
in a large variety of problems arising in elasticity, structural analysis, eco-
nomics, optimization, physical and engineering sciences, etc. For details, we
refer to [1-14] and the references therein. A useful and important general-
ization of variational inequalities is the variational-like inequalities. In [5, 7,
9-11, 14], the authors have studied several classes of variational-like inequal-
ities. It is worth mentioning that the standard projection technique can no
longer be applied to suggest the iterative algorithm for variational-like inequal-
ities. Glowinski-Lions-Tremolieres [8] suggested another technique, which does
not depend on the projection. This technique is called the auxiliary principle
technique. Ansari-Yao [1] and Zeng [14] studied mixed variational-like inequal-
ities in real Hilbert spaces, Ding-Yao [7] obtained the existence of solutions for
mixed quasi-variational-like inclusions in reflexive Banach spaces, and Ding [5]
proved the existence and uniqueness theorems of solutions for nonlinear mixed
variational-like inequalities dealing with a nonlinear form b(u,v) in reflexive
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Banach spaces. Recently, Ding-Tarafdar [6] and Liu-Ume-Kang [11] suggested
the existence of solutions for general nonlinear variational inequalities and gen-
eralized nonlinear variational-like inequalities involving a bilinear functional
a{u,v), a nonlinear form b(u,v) and some nonlinear monotone mappings in
reflexive Banach spaces.

Motivated and inspired by the results in [1-14], we introduce and study a new
class of generalized nonlinear variational-like inequalities, including as special
cases of the variational inequalities and the variational-like inequalities due to
Ansari-Yao [1], Ding [3-5], Ding-Tarafdar [6], Ding-Yao {7], Liu-Ume-Kang [11]
and Zeng [14]. By using a new auxiliary variational-like inequality technique,
firstly we give an existence and uniqueness theorem of solution for an auxiliary
problem dealing with the generalized nonlinear variational-like inequalities, sec-
ondly we suggest an iterative algorithm to compute the approximate solutions
of the generalized nonlinear variational-like inequalities, at last the convergence
of the iterative sequences generated by the algorithm is also proved. The results
presented here improve previously known results in this field.

2. Preliminaries

Let B be a reflexive Banach space with norm || - || and B* be the topological
dual space of B. Let (u,v) be the pairing between v € B* and v € B. In
particular, if B is a Hilbert space, {u,v) denotes an inner product in it. Let
D be a nonempty closed convex subset of B and let a : D x D — (—o0, +00)
be a continuous linear functional in both arguments and there exist positive
constants & > 0 and S > 0 such that

(1a) a(z,2) > aflal, Vz € D;

(1b) a(z,y) < Bllzllllyll, V=z,y€ D.

Clearly, a < . Let the functional b : D x D — (—o0, +00) satisfy the following
conditions:

(2a) b is linear in the first argument;

(2b) b is convex in the second argument;

there exists a constant v > 0 satisfying

(2¢) bz, y) < 7llzllllyll, Vz,y € D;

(Qd) b(m,y)—b(m,z) S b(.T,y - Z): nyyaz € D.

It is easy to show that b is continuous in the second argument by (2¢) and (2d).

Let T)A: D - B*N:B*xB*—> B*n:DxD— B,g: B— D be five
nonlinear mappings. For given w* € B*, we consider the following generalized
nonlinear variational-like inequality problem (GNVLIP):
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Find u € D such that
a(u,v — u) + b(gu,v) — b(gu,u)

(3) > (N(Tu, Au) — w*,n(v,u)), Vve D,

where a satisfies (1a) and (1b), b satisfies (2a)-(2d) and b is not necessarily
differentiable.

Special cases

(A) If w* =0 and gu = u for all u € D, then GNVLIP (3) reduces to the
following problem:
Find u € D such that

a(u,v — u) + b(u,v) — b(u,u) > (N(Tu, Au),n(v,u)), Vv € D,

which was introduced and studied by Liu-Ume-Kang [11].

(B) If N(u,v) = v for all u,v € B*, gu = u for all u € D and n(v,u) =
fv— fufor all v,u € D, where f : D — B is a given mapping and w* = 0,
then GNVLIP (3) is equivalent to finding v € D such that

a(u,v —u) + b(u,v) — b(u,u) > (Au, fv — fu), Vv € D,

which was studied by Ding-Tarafdar [6].

(C) If B is a Hilbert space, N(u,v) = v —wufor all u,v € B, a = 0, b(u,v) =
¢(v) for all u,v € D, where ¢ : D — (—o00,+00) is a real-valued function and
w* = 0, then GNVLIP (3) collapses to finding u € D such that

(TU - Au777(v7u)> + ¢(’U) - ¢(u) > Oa Yo € D,

which was called mized variational-like inequality and studied by Zeng [14].

(D) If B is a Hilbert space, N(u,v) = 2w* for all u,v € B, n(v,u) = v —u
and gu = u for all u,v € D, then GNVLIP (3) reduces to finding v € D such
that

a(u,v —u) + b(u,v) — blu,u) > (w*,v—u), YveD,
which was introduced and studied by Siddiqi and Ansari [12].

For suitable and appropriate choices of the mappings T, A, N,n,g,a and b,
one can obtain various new and previously known variational inequalities and
variational-like inequalities as special cases of GNVLIP (3). In brief, GNVLIP
(3) is a more general and unifying one, which is also one of the main motivations
of this paper.

Definition 2.1 ([11]). Let D be a nonempty convex subset of a reflexive Ba-
nach space B with dual space B*. Let T,A: D — B*, N: B* x B* — B* and
1 : D x D — B be four mappings.

(1) T is said to be (t,n)-relaved Lipschitz with respect to the first argument
of N if there exists a constant ¢ > 0 such that

(N(Tz,u),n(y,z)) + (N(Ty,u),n(z,y))

4
@ > tlle —yll*>, Vz,y€ D, ue€ B
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(2) A is said to be (t,n)-pseudocontractive with respect to the second argu-
ment of N if there exists a constant ¢ > 0 such that
) (N (u, Az), n(y, ©)) + (N (u, Ay), n(z, y))

> —t||lz —y|?>, Vz,y € D,u€ B

(3) It =01in (4) (resp. (5)), then T is called n-antimonotone with respect
to the first argument of N (resp. n-entimonotone with respect to the second
argument of N);

(4) T is said to be ¢-Lipschitz continuous if there exists a constant ¢ > 0
such that

Tz -Tyll <tllz-yll, Vz,y€D;

(5) T is said to be n-strongly monotone if there exists a constant ¢ > 0 such

that
<T$—Ty,’l7($,y)> Z t||l‘—y”2, any € Da

(6) T is said to be t-relazed Lipschitz with respect to the first argument of

N if there exists a constant ¢ > 0 such that

(N(T.’L',’U/) - N(Ty,u),m - y) < —t“l‘ - y||27 ‘v’a:,y € Da u € B*a
(7) n is said to be t-Lipschitz continuous if there exists a constant ¢ > 0 such
that
In(z, Il < tllz ~yll, Ve,y e D;

(8) 7 is said to be t-strongly monotone if there exists a constant ¢ > 0 such
that

(@ —y,n(z,y)) > thle —ylI*, Va,y € D;
(9) N is said to be t-Lipschitz continuous in the first argument if there exists
a constant £ > 0 such that
IN(z,w) = Ny, Wl <tllw —yll, Va,y,ue B

In a similar way, we can define the Lipschitz continuity of the mapping N(, )
in the second argument.

Definition 2.2 ([1]). A differential function h: D — (—oc,+00) on a convex
set D is called:
(1) n-convez if
h(y) = h(z) 2 (W'(z),n(y, )}, Vz,y €D,

where h'(xz) is the Fréchet derivative of h at z;
(2) n-strongly convez if there exists a constant g > 0 such that

h(y) — h(z) — (b (2),n(y,2)) > (1/2)||lz — y|I*, Y=,y € D.
It is easy to prove the following result.

Proposition 2.1. Let h be o differentiable and n-strongly convez functional
on a convexr subset D of B, and let n: D x D — B be a mapping such that
n(z,y) +nly,z) = 0,Yz,y € D. Then h' is n-strongly monotone.
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Proof. Since h is a differentiable and n-strongly convex functional on a convex
subset D of B,

(6) h(y) — h(z) = (R'(),n(y, )) > (u/2)llx - ylI>, Vz,y € D;

(1) h(z) = hy) = B @),n(y) > (u/2)lle-yll*, Vz,yeD.
Adding (6) and (7), we have

(W' (y) = B (2), 0y, %)) > plle — yl*,
that is, b’ is p-strongly monotone. This completes the proof. a

Lemma 2.1 ([2]). Let E be ¢ topological vector space, X a nonempty convexr
subset of E and f,g: X x X — [—o00,+00] such that

(a) for each z,y € X, f(z,y) > 0 implies g(z,y) > 0;

(b) for each fized x € X,y — f(z,y) is lower semicontinuous on any
nonempty compact subset of X;

(c) for each A € I(X) and for each y € co(A),mingcag(z,y) < 0, where
$(X) denotes the set of all nonempty finite subset of X;

(d) there exist a nonempty closed and compact subset K of X and zo € K
such that g(zo,y) > 0 for all y € X\K.

Then there exists § € K such that f(z,y) <0 for all z € X.

In order to obtain our results, we need the following assumption.

Assumption 2.1. The mapping n: D x D — B satisfies the following condi-
tions:

(a) n(z,y) +n(y,z) =0, Vz,y € D;

(b) for given u,v,w* € D, mapping w = (N(Tu, Au)—w*,n(v,w)) is convex
and lower semicontinuous.

Remark 2.1. Tt is easy to see that n(z,z) = 0 and w — (N(Tu,Au) —
w*,n(w,v)) is concave.

3. Existence and uniqueness theorem of solution for the auxiliary
problem

Now we extend the auxiliary principle technique to study the existence and
uniqueness of solution for GNVLIP (3).

Let h: D — (=00, +o0] be a given Fréchet differentiable convex functional
and p > 0 be a constant. For given v € D and w* € B*, we consider the
following auxiliary problem: Find w € D such that

(h(w), v —w)
(8) > (h’(u)v v UJ) + pUV(TUW A’LL) - UJ*) 77(1)7 w))

— pb(gu,v) + pb(gu, w) — palu,v — w), Vv € D.
Firstly, we prove the existence and uniqueness of solution for the auxiliary
problem (8).
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Theorem 3.1. Let D be a nonempty closed convex subset of a reflezive Banach
space B with dual space B*. Assume that o : D x D — (—o0,+00) is a
continuous linear function in both arguments and satisfies (1a) and (1b), and
b:DxD — (—00,+00) satisfies conditions (2b), (2¢) and (2d). Let 7 :
D xD — B be a mapping and h : D — (—o00, +00] be a differentiable functional
such that

(a) n is £ > 0-Lipschitz continuous and Assumption 2.1 holds;

(b) h is strongly convezr with constant ;1 > 0 and h' is continuous.

Then for given w* € B* and u € D, the auziliary problem (8) has a unique
solution.

Proof. For given w* € B* and u € D, define ¢,1 : D x D — (—o00, +o0) by

p(v,w) = (R (u) = h'(v),v = w) + p(N(Tu, Au) — w*, (v, w))

9
©) — pb(gu,v) + pb(gu,w) — pa{u,v —w), Yv,w € D,

(10) P, w) = (h'(u) = h'(w),v — w) + p{N(Tu, Au) — w*, n(v, w))
— pb(gu,v) + pb(gu, w) — pa(u,v —w), Vv,w € D.

We verify that the mappings ¢, ¢ satisfy all conditions of Lemma, 2.1. It follows
from the strong convexity of h and Proposition 2.1 that A’ is strongly monotone
with constant p > 0 and

Y(v,w) — p(v,w) = <hl(v) - h/(w)’v —w)
Z,LL“’U—’U)H2, VU,'U}ED,

which yields that (v, w) > 0 implies that (v, w) > 0. The continuity of a and
b in the second argument and Assumption 2.1 ensure that w — (v, w) is lower
semicontinuous on D. We claim that condition (c) of Lemma 2.1 holds. If it
were false, then there exist a finite set {v1,...,v,} C D and w = Y, Av;
with A; > 0 and >°1 | \; = 1 such that

Y(vi,w) = (W' (w) — B (w),v; —w) + p(N(Tu, Au) — w*,n(vi, w))
— pb{gu, v;) + pb(gu, w) ~ pa(u,v; —w) >0, 1<i<n,

Note that a is linear in both arguments, b is convex in the second argument
and w = (N(Tu, Au) — w*,n(v,w)) is convex. It follows that

0< Zn: )\izb(v,-,w

Z )\ hl h/ +p2)\ T'U,,AU) - w*,n(viﬂw)>

—pZ)\ib(gu,vi)—i—pZ (gu, w) Ekauvl
i=1

=1
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= p Y AN (Tu, Au) = w*, n(vi,w)) = p Y Aib(gu, vs) + pblgu, w)
i=1 i=1
< p(N(TU, A’LL) - "-U*a n(wv ’lU)> = 07
which is a contradiction. Hence, condition (¢) of Lemma 2.1 is satisfied. Let v*

be an arbitrary element in D. Put R = i(”h’(u) — K (") + pg||N(Tu, Au) —

w*|| + pyllguli + pBllul)) and K = {w € D : [lw—v*|| < R}. Then K is a weakly
compact convex subset of D.
For any w € D\ K, we know that

Y(v*,w) = (K (u) — K (w),v* —w) + p(N(Tu, Au) — w",n(v*, w)

— pb(gu, v*) + pb(gu, w) — pafu,v™ — w)

> (W (u) — B'(v*),v* —w) + (k' (v*) = ' (w),v" — w)
+ p(N(Tu, Au) — w*,n(v*,w)) — pb(gu,v" — w)
= pBllulll|v* = wil

> pllv* = wlf® = |[A(u) ~ B (")|l[lv" ~ w]]
— PE|IN(Tu, Au) — w*||[|lv* — w|| = pyllgullllv” — w]]
— pBljullllv” — wl|

= pllo* —wl|[|lv* — wil - i(llh'(u) = h'I)ll
+ p&|IN (Tw, Au) = w”|| + prllgull + pBllull)]

> 0.

Therefore, the condition (d) of Lemma 2.1 holds. Consequently, Lemma 2.1
ensures that there exists a w € K such that ¢{v, w) <0 for all v € D, that is,

(b (v),v — )
(11) > (h'(u),v — @) + p(N(Tu, Au) — w*, n(v, D))
— pb(gu,v) + pb(gu, w) — pa(u,v — ), Vv € D.
For each t € (0,1] and v € D, let z; = tv + (1 — t)@. Replacing v by z; in (11),
we get that
t{h (z¢),v — w)
> t{h'(u),v — @) + p{N(Tu, Au) — w*,n(tv + (1 — t)w,w))
— pb(gu, tv + (1 — t)w) + pb(gu, w) — pta(u,v — W)
> pt(N(Tu, Au) — w*,n(v,w)) — ptb(gu,v)
+ ptb(gu, w) — pta(u,v — W),
that is,
(W' (x4),v —w) 2 (W' (u),v = ®) + p(N (Tu, Au) — w*,n(v, D))
— pb(gu,v) + pb(gu, @) — pa(u,v — D).
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Letting t — 07 in the above inequality, we have
<hl(w)7 V= ’U—)> Z <h,(u’)7 V= ’U_)> + p<N(Tu? AU,) - U)*, U(U: ’U_I)>
- pb(gu7 U) + pb(gua '(T)) - pa(u,'v - ’U—))
That is, w is a solution of the auxiliary problem (8).
Next we prove the uniqueness of the solution of the auxiliary problem (8).

For given w* € B* and u € D, suppose that w; and ws are two different
solutions of the auxiliary problem (8). It is clear that

(W (w1),v — wr)
(12) > (W (u),v —w1) + p(N(Tu, Au) — w*,n(v, w1))
- pb(gua ’l)) + pb(gu7w1) - pa(u, v = wl)? Vv € D;

(h'(w2),v — w2)
(13) > (h'(u),v — w2) + p(N(Tu, Au) — w*, (v, ws))
— pb(gu,v) + pb(gu,ws) — pa(u,v —wy), Vv € D.
Taking v = we in (12) and v = w; in (13), respectively, and adding them, we
obtain that
(h(w1) = B (wa), ws —w1) >0,

which is contradiction with the strong monotonicity of A’. Hence the auxiliary
problem (8) has a unique solution. This completes the proof. O

Remark 3.1. It is not necessary that b is linear in the first argument in Theorem
3.1.

It follows from Theorem 3.1 that the auxiliary problem (8) yields a mapping
F : D — D defined by F(u) = w for each u € D, where w satisfies (8). Based
on Theorem 3.1, we suggest the following algorithm for GNVLIP (3).

Algorithm 3.1. For given w* € B* and ug € D, compute {un}n>0 C D by
solving the auziliary problem (8) with u = u,:
(h'(w),v - w)
>(h (un),v = w) + p(N (Tn, Aug) — w*,n(v,w))
= pb(gun, v) + pb(gun, w) ~ pa(un,v —w), Vv € D.

Let up.41 denote the solution of the above problem. That is,

(W (unt1),v — Uni1)
(14) Z(h,(un): U= un+1> + p<N(Tun’ Aun) - U)*an(vaun-i-l))

- pb(gun’ 1}) + pb(gun: un+1) - pa(un,v - ’U,n+1), Yv e D.
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4. Convergence of iterative sequence in reflexive Banach spaces

Now we prove that the sequence {u,},>0 generated by Algorithm 3.1 con-
verges strongly to a solution of GNVLIP (3).

Theorem 4.1. Let D be a nonempty closed convex subset of a reflexive Banach
space B with dual space B*. Let: D x D — B be a mapping, a: Dx D — R
be a continuous linear function in both arguments and satisfy (1a), (1b) end
b:D x D - R satisfy (2a)-(2d). Assume that T,A: D - B*, N : B* x B*
B*,n: DxD — B are four mappings and h : D = (—00, +0] is a differentiable
functional such that

{a) N is o1 and og-Lipschitz continuous in the first and the second argu-
ments, respectively;

(b) T is (t,n)-relazed Lipschitz with respect to the first argument of N and
is T-Lipschitz continuous;

(¢) A is (s,nm)-pseudocontractive with respect to the second argument of N
and is é-Lipschitz continuous;

(d) g is 8-Lipschitz continuous;

(e) n is € > 0-Lipschitz continuous, (b) of Assumption 2.1 holds and n{z,y) =
n(z,z)+n(z,y),V2,y,2 € D;

(£) h is strongly convex with constant u > 0 and h' is continuous;

(g) there exists a constant p > 0 satisfying

2u(t+ s — 70 + a)
(§1oy + Eboy + 0 + B)?

0<p<

Suppose that the solution set of GNVLIP (3) is nonempty. Then the sequence
{un}n>o defined by (14) converges strongly to a solution v € D of GNVLIP

(3).
Proof. Let u be a solution of GNVLIP (3). Define C : D — (—o0,+00] by
Cly) = h(u) = My) — (W' (y),u~y), VyeD.

Since k' is p-strongly monotone, it follows that
H 2
(15) Cly) > Sl —ulf’, VyeD.

Taking v = u,41 in (3) and v = w in (14), by (1a), (1b), (2a)-(2d) and condi-
tions (a)-(f), we get that
Clun) — C(un+1)
= h(tns1) = h(un) — (B'(un), tng1 — Un) + <h3(un)’un+i - Up)

- <h/(un)a u-— “n) + <h’(un+l)’ U - un-l-l)
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> Sllunss = wnll? = (B ), 0 = ) + (R (1), 0 = wng)

> g‘”umi-l - U’nHQ + p(N(Tum Aun) - w*,n(u¢un+1>>
— pb{gun, u) + pb(gUn, Unt1) = paltin, U — Uni1)
> g‘“uwH - “nH2 + p(N(Tup, Aun) — w*, n(t, Uni1))
- p<N(Tua Au) - ’Lf)*, 7]('&, un-%—l))
+ p(N(Tu, Au) — w*, n(u, unt1)) + pb(gu, unt1) — pb(gu, u)
+ pa(u, Uppr — )
- pb(g'uyun—(—l) + Pb(QU, 'U/) - pb(guny ’LL) + [)b(gun, un—{-l)
- pa’(u?un+1 - U’) - pa’(un”u’ - un‘i’l)
> Bl = wnll? + p{N (T, Aun) — N (T, At), (2, wns1))
— pb(gu — gun, Un+1) + pb(gu — gun, u)
+ pa(ty — U, Upt1 — U)
= gnum — wnll? + p(N (T, Attn) — N(Tw, Atir), 78, tns1))
+ p{N(Tu, Au,) — N(Tu, Au),n(u, unt1)) + p[b{gu — gun, u)
- b(gu - gun:un) + b(gu — GUn, un) - b(gu - gunaun—{—l)]
+ pla(un = U, Unp1 — Un) + Aty — U, Uy, — u)]
> Blltnsr = un2 + pN (T, Auy) = N (T, Aun), 0oty )
+ p(N(Tun, A'U,n) - N(T’LL, AHN)z 77(“m u'rH*l))
+ p{N(Tu, Auy) — N(Tu, Au), n{u, u,))
+ p{N(Tu, Auy) — N(Tu, Aw), n(%n, Unt1))
- py(llgu — gunllllun — ull + llgu — gunliilun — unsall)
= pBl[un — ulll|unt1 — unl| + palun - ulfl?
> Ellunss = wall® + ptllun = wl* = p&rorllun — ulllunts = ual
= ps|lun — "-‘“2 ~ p€doa||tn — ull||unt1 ~ unl]
= py0(|Jun = ull® + flun — ullllun — tnis))
- pﬁ“un - u““un-i—l - un“ + PO‘“uﬂ - UIP
= Elltnsr = wall? + p(t = 5 = 18 + @) = uf]
— pl§Tar + £doy + v0 + B)|lun — ulll|unt1 — ual|
_ p€ror + &bz + 98 + B)?

- = ulf,

>plt-s—70+a)
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that is,
C(Un) - C(un+l)
(16) p(éroy + Edor + 8 + B)*

>plt—s—v8+a)— o s — l?
for all n > 0. It follows from {g) that
) ‘ 2
(t—s_ngra)_ﬁ(me-l—f02+79+ﬂ) o

2p

Thus, (15) and (16) ensure that the nonnegative sequence {C(un)}n>0 is non-
increasing, hence it is convergent. Letting n — oo in (16), we conclude that
Hmp oo [ltn — u|l = 0. This completes the proof. O

5. Existence of solutions for GNVLIP (3) in Hilbert spaces

In this section, we study the existence of solutions for GNVLIP (3) and
convergence of the iterative sequence generated by Algorithm 3.1 in Hilbert
spaces.

Theorem 5.1. Let D be a nonempty closed convex subset of a Hilbert space B.
Letn) : DxD — B be a mapping, a : DxD — (—00, +00) be a continuous linear
function in both arguments and satisfy (1a), (1b) end b: D x D — (—o0, +o¢)
satisfy (2a)-(2d). Assume that T, A: D> B, N:BxB—->B,y:DxD — B
are four mappings and h : D — (—o00,+00] is o differentiable functional such
that

(a) N is 01 and oo-Lipschitz continuous in the first and the second argu-
ments, respectively;

(b) A, T and g are s, t and 8-Lipschitz continuous, respectively, and T is
e-relazed Lipschitz with respect to the first argument of N;

{(c) 1 is £ > 0-Lipschitz continuous and s-strongly monotone, and Assump-
tion 2.1 holds ;

(d) h is strongly convex with constant u > 0 and h' is 7-Lipschitz continuous;

(@) e = /12 =2u+ 1, k = a1t\/1 = 2 + €2 + 0286 + v6 + 3, there exists a

constant p > 0 satisfying

p< 5
and
ot >k [-Ku—F > [1- (4 - )0l — k),
‘ _e—k(u~-e) < Vi ~e)? —1(0?2 — k) + [e — k(u — e)]2
o2 — k2 oft? — k2 ’
or
o1t <k,
- =0, VST F TR,

o2 ~ 2 k% — g2
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Then the sequence {un}n>0 defined by (14) converges strongly to a solution
u € D of GNVLIP (3).

Proof. In order to show that GNVLIP (3) has a solution u € D, it is enough
to prove that the mapping F': D — D defined by (8) has a unique fixed point
u € D. Let z,y be arbitrary elements in D. It follows from Theorem 3.1 that

(W(Fz),v — Fx)
(17) > (W (z),v — Fz) + p(N(Tz, Az) — w*, (v, Fz))
— pb(gz,v) + pb(gz, Fx) — pa(z,v — Fz), Yv e D,

(hl(Fy)’v - Fy)
(18) > (W (y),v — Fy) + p(N(Ty, Ay) — w*, (v, Fy))
— pb(gy,v) + pb(gy, Fy) — pa(y,v — Fy), VYuve D.

Taking v = Fy in (17) and v = Fz in (18), respectively, and adding the
inequalities, we obtain that

(h'(Fz) — W'(Fy), Fx — Fy)
< (h(z) = W(y), Fz — Fy)
+ p(N(T'z, Az) — N(Ty, Ay),n(Fz, Fy))
+ pblgz — gy, Fy — Fz) + pa(z —y, Fy — Fz).
From condition (d), we have
pllFz - Fy|
< (W(z) = ' (y) - (z —y), Fz — Fy)
+{x —y — p[N(Ty, Az) — N(Tz, Az)], Fx — Fy)
+ p(N(Ty,Az) — N(T'z, Az), Fx — Fy — n(Fz, Fy))
+p(N(Ty, Az) - N(Ty, Ay),n(Fz, Fy))
(19) + pblgz — gy, Fy — Fz) + pa(z — y, Fy — Fx)
<|IW(z) = W' (y) = (z = y)lll|Fz - Fy|
+llz —y — p[N(Ty, Az) — N(T'z, Az)]||[|Fz ~ Fyl|
+ plIN(Ty, Az) = N(Tz, Az)||||Fz — Fy — n(Fz, Fy)||
+ plIN(Ty, Az) — N(Ty, Ay)|l|ln(Fz, Fy)||
+ gz — gyllliFz — Fy|| + pBllz — ylll|Fz — Fy|.
It follows from conditions (a)-(d) that
2 (z) — h'(y) = (= — y)I?
(20) = ||1'(z) = W' @) - 2(h'(z) — k'(y),7 — v) + [l — y|?
< (7 =2u+1)lz — I,
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lz — y — p[N(Ty, Az) — N(Tz, Ax)]||”
= |lz — ylI* — 2p(N(Ty, Az) — N(Tz, Az),z — y)
+ p?||N(Ty, Az) — N(Tz, A2)|?
<(1-2ep+oit?p?)llz — yll?,

(21)

|Fz — Fy — n(Fz, Fy)|®
(22) = ||[Fz — Fy|* - 2(Fz ~ Fy,n(Fz, Fy)) + |In(Fz, Fy)|
< (-2 +8)|Fz - Fyl*.
Using (20)-(22) in (19) and from conditions (a)-(e), we get that

1
1Pz = FylP < e+ /1 = 22p+ ott2p" + ko e = yllIFe ~ Fyll,
that is,
1Pz~ Fy| < 6lla -y,

where

6 = Ll-[e+\/1—25p+or%t2p2+kp].

It follows from (e) that 0 < § < 1 and F is a contraction mapping. Hence F
has a unique fixed point u € D, which is a solution of GNVLIP (3).

Now we show that lim,,_ec #n = u. Since u is a solution of GNVLIP (3), it
follows that for given w* € B*,

(h'(u),v —u) 2 (W' (w),v —u) + p(N (Tu, Au) — w*,7(v, u))

2
(23) — pb(gu,v) + pb(gu,u) — pa(u,v —u), Vv €& D.

Taking v = w in (14) and v = up41 in (23) and adding them, we can easily
obtain that ||uns1 — ul] < Ollun — ull < 0" ||lup — ul| and up, — u as n — .
This completes the proof. |
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