• 제목/요약/키워드: separated flows

검색결과 142건 처리시간 0.021초

VOID FRACTION PREDICTION FOR SEPARATED FLOWS IN THE NEARLY HORIZONTAL TUBES

  • AHN, TAE-HWAN;YUN, BYONG-JO;JEONG, JAE-JUN
    • Nuclear Engineering and Technology
    • /
    • 제47권6호
    • /
    • pp.669-677
    • /
    • 2015
  • A mechanistic model for void fraction prediction with improved interfacial friction factor in nearly horizontal tubes has been proposed in connection with the development of a condensation model package for the passive auxiliary feedwater system of the Korean Advanced Power Reactor Plus. The model is based on two-phase momentum balance equations to cover various types of fluids, flow conditions, and inclination angles of the flow channel in a separated flow. The void fraction is calculated without any discontinuity at flow regime transitions by considering continuous changes of the interfacial geometric characteristics and interfacial friction factors across three typical separated flows, namely stratified-smooth, stratified-wavy, and annular flows. An evaluation of the proposed model against available experimental data covering various types of fluids and flow regimes showed a satisfactory agreement.

진동하는 익형 주위의 유동장 해석을 위한 SST 난류 모델의 수정 (Modification of SST Turbulence Model for Computation of Oscillating Airfoil Flows)

  • 이보성;이상산;이동호
    • 한국전산유체공학회지
    • /
    • 제4권3호
    • /
    • pp.44-51
    • /
    • 1999
  • A modified version of SST turbulence model is suggested to simulate unsteady separated flows over oscillating airfoils. The original SST model, which shows good performance in predicting various steady flows, often results in oscillatory behavior of aerodynamic loads in large separated flow regions. It is shown that this oscillatory behavior is due to the adoption of the absolute value of vorticity in generalizing the original model. As a remedy, a modification is made such that the vorticity in the original SST model is replaced by strain rate. The present model is verified for a mild separated airfoil flow at fixed angle of incidence and for unsteady flowfields about oscillating airfoils. The results are compared with BSL model and original SST model. It is illustrated that the present model gives a better agreement with the experimental results than other two models.

  • PDF

Numerical study of the effect of periodic jet excitation on cylinder aerodynamic instability

  • Hiejima, S.;Nomura, T.
    • Wind and Structures
    • /
    • 제5권2_3_4호
    • /
    • pp.141-150
    • /
    • 2002
  • Numerical simulations based on the ALE finite element method are carried out to examine the aerodynamics of an oscillating circular cylinder when the separated shear flows around the cylinder are stimulated by periodic jet excitation with a shear layer instability frequency. The excitation is applied to the flows from two points on the cylinder surface. The numerical results showed that the excitation with a shear layer instability frequency can reduce the negative damping and thereby stabilize the aerodynamics of the oscillating cylinder. The change of the lift phase seems important in stabilizing the cylinder aerodynamics. The change of lift phase is caused by the merger of the vortices induced by the periodic excitation with a shear layer instability frequency, and the vortex merging comes from the high growth rate, the rapid increase of wave number and decrease of phase velocity for the periodic excitation in the separated shear flows.

압력비에 따른 박리 노즐 유동의 수치적 해석 (Numerical Study of Separated Nozzle Flows for Various Pressure Ratios)

  • 김희경;박승오
    • 한국항공우주학회지
    • /
    • 제30권8호
    • /
    • pp.1-9
    • /
    • 2002
  • 압력비에 따라 유동 구조가 달라지는 박리 노즐 유동을 수치적인 방법으로 해석하였다. 축대칭 Navier-Stokes 식에 유한 체적법을 적용하여 공간 차분항에는 AUSM 기법, 시간 차분항은 2차의 시간 정확도를 가지는 기법을 사용하였다. 형상이 주어진 노즐 유동은 압력비에 따라 1차원 해석해가 존재하지만, 수치적으로 해석된 축대칭 노즐 유동은 매우 복잡한 유동 구조를 나타내었다. 압력비에 따라 박리 또는 비박리 유동, 정상 또는 일정한 주기성을 가지는 비정상 유동, Regular reflection, recirculation이 존재하거나 존재하지 않는 Mach Reflection 등의 특징적인 유동을 가지고 있었다. 본 연구에서는 이러한 유동 구조 중에서 박리 노즐 유동을 고찰하여 일정한 규칙성을 가지고 유동 구분을 하였다.

TOPOLOGICAL PRESSURE OF CONTINUOUS FLOWS WITHOUT FIXED POINTS

  • LEE, KYUNG-BOK
    • 대한수학회논문집
    • /
    • 제20권2호
    • /
    • pp.365-379
    • /
    • 2005
  • The purpose of this paper is to correct erroneous proofs of theorems of He, Lu, Wang and Zheng [1] about the topological pressure of continuous flows without fixed points and to give proofs of some results which are stated in the literature without proofs and thereby to show that their theorems are still true.

국소교란에 의한 난류박리 재부착 유동의 수치해석 (Numerical Simulation of Turbulent Separated and Reattaching Flows by Local Forcing)

  • 리광훈;성형진
    • 대한기계학회논문집B
    • /
    • 제24권3호
    • /
    • pp.467-476
    • /
    • 2000
  • An unsteady numerical simulation was performed for locally-forced separated and reattaching flow over a backward-facing step. The local forcing was given to the separated and reattaching flow by means of a sinusoidally oscillating jet from a separation line. A version of the $k-{\varepsilon}-f_{\mu}$ model was employed, in which the near-wall behavior without reference to distance and the nonequilibrium effect in the recirculation region were incorporated. The Reynolds number based on the step height (H) was fixed at $Re_H=33000$, and the forcing frequency was varied in the range $0{\leq}St_H{\leq}2$. The predicted results were compared and validated with the experimental data of Chun and Sung. It was shown that the unsteady locally-forced separated and reattaching flows are predicted reasonably well with the $k-{\varepsilon}-f_{\mu}$ model. To characterize the large-scale vortex evolution due to the local forcing, numerical flow visualizations were carried out.

난류박리 및 재부착 유동에 대한 저레이놀즈수 비선형 열전달 모형의 개발 (A Non-linear Low-Reynolds-Number Heat Transfer Model for Turbulent Separated and Reattaching Flows)

  • 리광훈;성형진
    • 대한기계학회논문집B
    • /
    • 제24권2호
    • /
    • pp.316-323
    • /
    • 2000
  • A nonlinear low-Reynolds-number heat transfer model is developed to predict turbulent flow and heat transfer in separated and reattaching flows. The $k-{\varepsilon}-f_{\mu}$ model of Park and Sung (1997) is extended to a nonlinear formulation, based on the nonlinear model of Gatski and Speziale (1993). The limiting near-wall behavior is resolved by solving the $f_{\mu}$ elliptic relaxation equation. An improved explicit algebraic heat transfer model is proposed, which is achieved by applying a matrix inversion. The scalar heat fluxes are not aligned with the mean temperature gradients in separated and reattaching flows; a full diffusivity tensor model is required. The near-wall asymptotic behavior is incorporated into the $f_{\lambda}$ function in conjunction with the $f_{\mu}$ elliptic relaxation equation. Predictions of the present model are cross-checked with existing measurements and DNS data. The model preformance is shown to be satisfactory.

난류박리 및 재부착 유동의 해석을 위한 비선형 저레이놀즈수 k -$\varepsilon$ 난류모형의 개발 (A Nonlinear Low-Reynolds-Number k -$\varepsilon$ Model for Turbulent Separated and Reattaching Flows)

  • 박태선;성형진
    • 대한기계학회논문집
    • /
    • 제19권8호
    • /
    • pp.2051-2063
    • /
    • 1995
  • An improved version of nonlinear low-Reynolds-number k-.epsilon. model is developed. In this model, the limiting near-wall behavior and nonlinear Reynolds stress representations are incorporated. Emphasis is placed on the adoption of Ry(.iden. $k^{1}$2/y/.nu.) instead of $y^{[-10]}$ (.iden. $u_{{\tau}/y/{\nu}}$) in the low-Reynolds-number model for predicting turbulent separated and reattaching flows. The non-equilibrium effect is examined to describe recirculating flows away from the wall. The present model is validated by doing the benchmark problem of turbulent flow behind a backward-facing step. The predictions of the present model are cross-checked with the existing measurements and DNS data. The model performance is shown to be generally satisfactory.

압축성 박리 유동에서 Realizability 조건의 영향 (INFLUENCE OF THE REALIZABILITY CONDITION ON TURBULENT SEPARATED FLOW SIMULATIONS)

  • 박수형;사정환;김지웅
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2007년도 춘계 학술대회논문집
    • /
    • pp.142-147
    • /
    • 2007
  • The realizability condition has been applied to modern turbulence models, Simulations are performed to compare ${\kappa}-{\omega}$ turbulence models imposing the realizability condition. An improvement to the ${\kappa}-{\varepsilon}$ turbulence model is also presented and shown to lead to better agreement with data for supersonic base flows. The improvement is achieved by imposing a grid-independent realizability constraint in the Launder-Sharma ${\kappa}-{\varepsilon}$ model. Numerical results for several test problems show a critical role of the realizability constraint in the prediction of separated flows.

  • PDF