DOI QR코드

DOI QR Code

VOID FRACTION PREDICTION FOR SEPARATED FLOWS IN THE NEARLY HORIZONTAL TUBES

  • AHN, TAE-HWAN (School of Mechanical Engineering, Pusan National University) ;
  • YUN, BYONG-JO (School of Mechanical Engineering, Pusan National University) ;
  • JEONG, JAE-JUN (School of Mechanical Engineering, Pusan National University)
  • Received : 2015.04.13
  • Accepted : 2015.06.02
  • Published : 2015.12.25

Abstract

A mechanistic model for void fraction prediction with improved interfacial friction factor in nearly horizontal tubes has been proposed in connection with the development of a condensation model package for the passive auxiliary feedwater system of the Korean Advanced Power Reactor Plus. The model is based on two-phase momentum balance equations to cover various types of fluids, flow conditions, and inclination angles of the flow channel in a separated flow. The void fraction is calculated without any discontinuity at flow regime transitions by considering continuous changes of the interfacial geometric characteristics and interfacial friction factors across three typical separated flows, namely stratified-smooth, stratified-wavy, and annular flows. An evaluation of the proposed model against available experimental data covering various types of fluids and flow regimes showed a satisfactory agreement.

Keywords

Acknowledgement

Supported by : NRF (National Research Foundation of Korea, KORSAFe, Nuclear Safety and Security Commission (NSSC)

References

  1. S. Kim, B.U. Bae, Y.J. Cho, Y.S. Park, K.H. Kang, B.J. Yun, An experimental study on the validation of cooling capability for the Passive Auxiliary Feedwater System (PAFS) condensation heat exchanger, Nucl. Eng. Design 260 (2013) 54-63. https://doi.org/10.1016/j.nucengdes.2013.03.016
  2. S.S. Jeon, S.J. Hong, J.Y. Park, K.W. Seul, G.C. Park, Assessment of horizontal in-tube condensation models using MARS code. Part I: stratified flow condensation, Nucl. Eng. Design 254 (2013) 254-265. https://doi.org/10.1016/j.nucengdes.2012.10.006
  3. S.S. Jeon, S.J. Hong, J.Y. Park, K.W. Seul, G.C. Park, Assessment of horizontal in-tube condensation models using MARS code. Part II: annular flow condensation, Nucl. Eng. Design 262 (2013) 510-524. https://doi.org/10.1016/j.nucengdes.2013.05.014
  4. T.H. Ahn, B.J. Yun, J.J. Jeong, K.H. Kang, Y.S. Park, J. Cheon, D.W. Jerng, Development of a new condensation model for the nearly-horizontal heat exchanger tube under the steam flowing conditions, Int. J. Heat Mass Transfer 79 (2014) 876-884. https://doi.org/10.1016/j.ijheatmasstransfer.2014.08.087
  5. R.W. Lockhart, R.C. Martinelli, Proposed correlation of data for isothermal two-phase, two-component flow in pipes, Chem. Eng. Prog. 45 (1949) 39-48.
  6. S.M. Zivi, Estimation of steady-state steam void-fraction by means of the principle of minimum entropy production, J. Heat Transfer 86 (1964) 247-251. https://doi.org/10.1115/1.3687113
  7. D. Butterworth, A comparison of some void-fraction relationships for co-current gas-liquid flow, Int. J. Multiphase Flow 1 (1975) 845-850. https://doi.org/10.1016/0301-9322(75)90038-5
  8. Y. Taitel, A.E. Dukler, A model for predicting flow regime transitions in horizontal and near horizontal gas-liquid flow, AIChE. J. 22 (1976) 47-55. https://doi.org/10.1002/aic.690220105
  9. D. Barnea, O. Shoham, Y. Taitel, Flow pattern transition for vertical downward two phase flow, Chem. Eng. Sci. 37 (1982) 741-744. https://doi.org/10.1016/0009-2509(82)85034-3
  10. A. Ullmann, N. Brauner, Closure relations for two-fluid models for two-phase stratified smooth and stratified wavy flows, Int. J. Multiphase Flow 32 (2006) 82-105. https://doi.org/10.1016/j.ijmultiphaseflow.2005.08.005
  11. X.T. Chen, X.D. Cal, J.P. Brill, Gas-liquid stratifiedewavy flow in horizontal pipelines, J. Energy Resources Technol. 119 (1997) 209-216. https://doi.org/10.1115/1.2794992
  12. N. Andritsos, T.J. Hanratty, Influence of interfacial waves in stratified gas-liquid flows, AIChE. J. 33 (1987) 444-454. https://doi.org/10.1002/aic.690330310
  13. G.B. Wallis, Annular two-phase flowdPart 1: a simple theory, J. Fluids Eng. 92 (1970) 59-72.
  14. M. Ottens, H.C.J. Hoefsloot, P.J. Hamersma, Correlations predicting liquid hold-up and pressure gradient in steadystate (nearly) horizontal co-current gas-liquid pipe flow, Chem. Eng. Res. Design 79 (2001) 581-592. https://doi.org/10.1205/02638760152424361
  15. H. Blasius, Das Ahnlichkeitsgesetz bei Reibungsvorgangen in Flussigkeiten, Springer, Berlin, 1913 [in German].
  16. N. Brauner, D.M. Maron, Two-phase liquideliquid stratified flow, Physico-Chem. Hydrodynam. 11 (1989) 487-506.
  17. T. Fukano, A. Ousaka, Prediction of the circumferential distribution of film thickness in horizontal and nearhorizontal gas-liquid annular flows, Int. J. Multiphase Flow 15 (1989) 403-419. https://doi.org/10.1016/0301-9322(89)90010-4
  18. D. Barnea, Transition from annular flow and from dispersed bubble flowdunified models for the whole range of pipe inclinations, Int. J. Multiphase Flow 12 (1986) 733-744. https://doi.org/10.1016/0301-9322(86)90048-0
  19. D. Biberg, An explicit approximation for the wetted angle in two e Phase stratified pipe flow, Can. J. Chem. Eng. 77 (1999) 1221-1224. https://doi.org/10.1002/cjce.5450770619
  20. J. Hart, P.J. Hamersma, J.M.H. Fortuin, Correlations predicting frictional pressure drop and liquid holdup during horizontal gas-liquid pipe flow with a small liquid holdup, Int. J. Multiphase Flow 15 (1989) 947-964. https://doi.org/10.1016/0301-9322(89)90023-2
  21. F. Franca, R.T. Lahey Jr., The use of drift-flux techniques for the analysis of horizontal two-phase flows, Int. J. Multiphase Flow 18 (1992) 787-801. https://doi.org/10.1016/0301-9322(92)90059-P
  22. S.V. Paras, N.A. Vlachos, A.J. Karabelas, Liquid layer characteristics in stratifieddAtomization flow, Int. J. Multiphase Flow 20 (1994) 939-956. https://doi.org/10.1016/0301-9322(94)90103-1
  23. G.H. Abdul-Majeed, Liquid holdup in horizontal two-phase gasdliquid flow, J. Petroleum Sci. Eng. 15 (1996) 271-280. https://doi.org/10.1016/0920-4105(95)00069-0
  24. S. Badie, C.P. Hale, C.J. Lawrence, G.F. Hewitt, Pressure gradient and holdup in horizontal two-phase gaseliquid flows with low liquid loading, Int. J. Multiphase Flow 26 (2000) 1525-1543. https://doi.org/10.1016/S0301-9322(99)00102-0
  25. R. Srisomba, O. Mahian, A.S. Dalkilic, S. Wongwises, Measurement of the void fraction of R-134a flowing through a horizontal tube, Int. Comm. Heat Mass Transfer 56 (2014) 8-14. https://doi.org/10.1016/j.icheatmasstransfer.2014.04.004
  26. C.J. Crowley, G.B. Wallis, J.J. Barry, Validation of a onedimensional wave model for the stratifiedeto-slug flow regime transition, with consequences for wave growth and slug frequency, Int. J. Multiphase Flow 18 (1992) 249-271. https://doi.org/10.1016/0301-9322(92)90087-W

Cited by

  1. Visualization method for cross-sectional two-phase flow structure during the condensation of steam in a tube vol.20, pp.3, 2015, https://doi.org/10.1007/s12650-016-0408-0
  2. Wet gas over-reading correction for ultrasonic flow meters vol.60, pp.3, 2015, https://doi.org/10.1007/s00348-019-2693-6
  3. Pressure Drop and Void Fraction in Horizontal Air-Water Stratified Flows with Smooth Interface at Atmospheric Pressure vol.5, pp.3, 2015, https://doi.org/10.3390/fluids5030101