Acknowledgement
Supported by : NRF (National Research Foundation of Korea, KORSAFe, Nuclear Safety and Security Commission (NSSC)
References
- S. Kim, B.U. Bae, Y.J. Cho, Y.S. Park, K.H. Kang, B.J. Yun, An experimental study on the validation of cooling capability for the Passive Auxiliary Feedwater System (PAFS) condensation heat exchanger, Nucl. Eng. Design 260 (2013) 54-63. https://doi.org/10.1016/j.nucengdes.2013.03.016
- S.S. Jeon, S.J. Hong, J.Y. Park, K.W. Seul, G.C. Park, Assessment of horizontal in-tube condensation models using MARS code. Part I: stratified flow condensation, Nucl. Eng. Design 254 (2013) 254-265. https://doi.org/10.1016/j.nucengdes.2012.10.006
- S.S. Jeon, S.J. Hong, J.Y. Park, K.W. Seul, G.C. Park, Assessment of horizontal in-tube condensation models using MARS code. Part II: annular flow condensation, Nucl. Eng. Design 262 (2013) 510-524. https://doi.org/10.1016/j.nucengdes.2013.05.014
- T.H. Ahn, B.J. Yun, J.J. Jeong, K.H. Kang, Y.S. Park, J. Cheon, D.W. Jerng, Development of a new condensation model for the nearly-horizontal heat exchanger tube under the steam flowing conditions, Int. J. Heat Mass Transfer 79 (2014) 876-884. https://doi.org/10.1016/j.ijheatmasstransfer.2014.08.087
- R.W. Lockhart, R.C. Martinelli, Proposed correlation of data for isothermal two-phase, two-component flow in pipes, Chem. Eng. Prog. 45 (1949) 39-48.
- S.M. Zivi, Estimation of steady-state steam void-fraction by means of the principle of minimum entropy production, J. Heat Transfer 86 (1964) 247-251. https://doi.org/10.1115/1.3687113
- D. Butterworth, A comparison of some void-fraction relationships for co-current gas-liquid flow, Int. J. Multiphase Flow 1 (1975) 845-850. https://doi.org/10.1016/0301-9322(75)90038-5
- Y. Taitel, A.E. Dukler, A model for predicting flow regime transitions in horizontal and near horizontal gas-liquid flow, AIChE. J. 22 (1976) 47-55. https://doi.org/10.1002/aic.690220105
- D. Barnea, O. Shoham, Y. Taitel, Flow pattern transition for vertical downward two phase flow, Chem. Eng. Sci. 37 (1982) 741-744. https://doi.org/10.1016/0009-2509(82)85034-3
- A. Ullmann, N. Brauner, Closure relations for two-fluid models for two-phase stratified smooth and stratified wavy flows, Int. J. Multiphase Flow 32 (2006) 82-105. https://doi.org/10.1016/j.ijmultiphaseflow.2005.08.005
- X.T. Chen, X.D. Cal, J.P. Brill, Gas-liquid stratifiedewavy flow in horizontal pipelines, J. Energy Resources Technol. 119 (1997) 209-216. https://doi.org/10.1115/1.2794992
- N. Andritsos, T.J. Hanratty, Influence of interfacial waves in stratified gas-liquid flows, AIChE. J. 33 (1987) 444-454. https://doi.org/10.1002/aic.690330310
- G.B. Wallis, Annular two-phase flowdPart 1: a simple theory, J. Fluids Eng. 92 (1970) 59-72.
- M. Ottens, H.C.J. Hoefsloot, P.J. Hamersma, Correlations predicting liquid hold-up and pressure gradient in steadystate (nearly) horizontal co-current gas-liquid pipe flow, Chem. Eng. Res. Design 79 (2001) 581-592. https://doi.org/10.1205/02638760152424361
- H. Blasius, Das Ahnlichkeitsgesetz bei Reibungsvorgangen in Flussigkeiten, Springer, Berlin, 1913 [in German].
- N. Brauner, D.M. Maron, Two-phase liquideliquid stratified flow, Physico-Chem. Hydrodynam. 11 (1989) 487-506.
- T. Fukano, A. Ousaka, Prediction of the circumferential distribution of film thickness in horizontal and nearhorizontal gas-liquid annular flows, Int. J. Multiphase Flow 15 (1989) 403-419. https://doi.org/10.1016/0301-9322(89)90010-4
- D. Barnea, Transition from annular flow and from dispersed bubble flowdunified models for the whole range of pipe inclinations, Int. J. Multiphase Flow 12 (1986) 733-744. https://doi.org/10.1016/0301-9322(86)90048-0
- D. Biberg, An explicit approximation for the wetted angle in two e Phase stratified pipe flow, Can. J. Chem. Eng. 77 (1999) 1221-1224. https://doi.org/10.1002/cjce.5450770619
- J. Hart, P.J. Hamersma, J.M.H. Fortuin, Correlations predicting frictional pressure drop and liquid holdup during horizontal gas-liquid pipe flow with a small liquid holdup, Int. J. Multiphase Flow 15 (1989) 947-964. https://doi.org/10.1016/0301-9322(89)90023-2
- F. Franca, R.T. Lahey Jr., The use of drift-flux techniques for the analysis of horizontal two-phase flows, Int. J. Multiphase Flow 18 (1992) 787-801. https://doi.org/10.1016/0301-9322(92)90059-P
- S.V. Paras, N.A. Vlachos, A.J. Karabelas, Liquid layer characteristics in stratifieddAtomization flow, Int. J. Multiphase Flow 20 (1994) 939-956. https://doi.org/10.1016/0301-9322(94)90103-1
- G.H. Abdul-Majeed, Liquid holdup in horizontal two-phase gasdliquid flow, J. Petroleum Sci. Eng. 15 (1996) 271-280. https://doi.org/10.1016/0920-4105(95)00069-0
- S. Badie, C.P. Hale, C.J. Lawrence, G.F. Hewitt, Pressure gradient and holdup in horizontal two-phase gaseliquid flows with low liquid loading, Int. J. Multiphase Flow 26 (2000) 1525-1543. https://doi.org/10.1016/S0301-9322(99)00102-0
- R. Srisomba, O. Mahian, A.S. Dalkilic, S. Wongwises, Measurement of the void fraction of R-134a flowing through a horizontal tube, Int. Comm. Heat Mass Transfer 56 (2014) 8-14. https://doi.org/10.1016/j.icheatmasstransfer.2014.04.004
- C.J. Crowley, G.B. Wallis, J.J. Barry, Validation of a onedimensional wave model for the stratifiedeto-slug flow regime transition, with consequences for wave growth and slug frequency, Int. J. Multiphase Flow 18 (1992) 249-271. https://doi.org/10.1016/0301-9322(92)90087-W
Cited by
- Visualization method for cross-sectional two-phase flow structure during the condensation of steam in a tube vol.20, pp.3, 2015, https://doi.org/10.1007/s12650-016-0408-0
- Wet gas over-reading correction for ultrasonic flow meters vol.60, pp.3, 2015, https://doi.org/10.1007/s00348-019-2693-6
- Pressure Drop and Void Fraction in Horizontal Air-Water Stratified Flows with Smooth Interface at Atmospheric Pressure vol.5, pp.3, 2015, https://doi.org/10.3390/fluids5030101