• Title/Summary/Keyword: semipositone

Search Result 3, Processing Time 0.015 seconds

EXISTENCE OF A POSITIVE SOLUTION TO INFINITE SEMIPOSITONE PROBLEMS

  • Eunkyung Ko
    • East Asian mathematical journal
    • /
    • v.40 no.3
    • /
    • pp.319-328
    • /
    • 2024
  • We establish an existence result for a positive solution to the Schrödinger-type singular semipositone problem: $-{\Delta}u\,=\,V(x)u\,=\,{\lambda}{\frac{f(u)}{u^{\alpha}}}$ in Ω, u = 0 on ∂Ω, where Ω is a bounded domain in ℝN , N > 2, λ ∈ ℝ is a positive parameter, V ∈ L(Ω), 0 < α < 1, f ∈ C([0, ∞), ℝ) with f(0) < 0. In particular, when ${\frac{f(s)}{s^{\alpha}}}$ is sublinear at infinity, we establish the existence of a positive solutions for λ ≫ 1. The proofs are mainly based on the sub and supersolution method. Further, we extend our existence result to infinite semipositone problems with mixed boundary conditions.

EXISTENCE AND UNIQUENESS OF POSITIVE SOLUTIONS FOR A CLASS OF SEMIPOSITONE QUASILINEAR ELLIPTIC SYSTEMS WITH DIRICHLET BOUNDARY VALUE PROBLEMS

  • CUI, ZHOUJIN;YANG, ZUODONG;ZHANG, RUI
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.1_2
    • /
    • pp.163-173
    • /
    • 2010
  • We consider the system $$\{{{-{\Delta}_pu\;=\;{\lambda}f(\upsilon),\;\;\;x\;{\in}\;{\Omega}, \atop -{\Delta}_q{\upsilon}\;=\;{\mu}g(u),\;\;\;x\;{\in}\;{\Omega},} \atop u\;=\;\upsilon\;=\;0,\;\;\;x\;{\in}\;{\partial\Omega},}$$ where ${\Delta}_pu\;=\;div(|{\nabla}_u|^{p-2}{\nabla}_u)$, ${\Delta}_{q{\upsilon}}\;=\;div(|{\nabla}_{\upsilon}|^{q-2}{\nabla}_{\upsilon})$, p, $q\;{\geq}\;2$, $\Omega$ is a ball in $\mathbf{R}^N$ with a smooth boundary $\partial\Omega$, $N\;{\geq}\;1$, $\lambda$, $\mu$ are positive parameters, and f, g are smooth functions that are negative at the origin and f(x) ~ $x^m$ g(x) ~ $x^n$ for x large for some m, $n\;{\geq}\;0$ with mn < (p - 1)(q - 1). We establish the existence and uniqueness of positive radial solutions when the parameters $\lambda$ and $\mu$ are large.