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EXISTENCE OF POSITIVE SOLUTION FOR A

SEMIPOSITONE SYSTEM WITH INTEGRAL BOUNDARY

VALUES

Eunkyung Ko and Eun Kyoung Lee∗

Abstract. We establish the existence of a positive solution to a semi-

positone system with integral boundary condition for the large value of
the parameter involved in the system. We prove our results by using sub

and super solution argument.

1. Introduction

In this paper, we study the existence of a positive radial solution to the
following semipositone system with nonlocal boundary values on an exterior
domain: 

−∆u = λK1(|x|)f1(u(x), v(x)), x ∈ Ωe,

−∆v = λK2(|x|)f2(u(x), v(x)), x ∈ Ωe,

u(x)→ 0, v(x)→ 0, if |x| → ∞,

u(x) =
∫

Ωe
l1(|y|)v(y)dy, if |x| = r0,

v(x) =
∫

Ωe
l2(|y|)u(y)dy, if |x| = r0,

(1)

where Ωe = {x ∈ RN : |x| > r0 for r0 > 0, N ≥ 3}, λ is a positive pa-
rameter, Ki ∈ C((r0,∞), (0,∞)) is such that

∫∞
r0
rνiKi(r)dr < ∞ for some

νi > 1, fi ∈ C(R2
+,R) and li ∈ L1(Ωe) is a nonnegative function satisfying

0 < wNr
N−2
0

∫∞
r0
rli(r)dr < 1 for each i = 1, 2 when wN is the surface area of

the unit sphere in RN .
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Such differential equations with an integral boundary condition arise in var-
ious areas of applied mathematics and physics like heat conduction, chemical
engineering, underground water flow, thermo-elasticity and plasma phenomena.
One may refer to [4], [11] - [14] and [16] for integral boundary value problems
and the references therein.

Note that the change of variables r = |x| and t = ( rr0 )2−N transforms (1)
into: 

−u′′(t) = λa1(t)f1(u(t), v(t)), t ∈ (0, 1),

−v′′(t) = λa2(t)f2(u(t), v(t)), t ∈ (0, 1),

u(0) = 0 = v(0),

u(1) =
∫ 1

0
g1(s)v(s)ds,

v(1) =
∫ 1

0
g2(s)u(s)ds,

(2)

with

ai(t) =

(
1

N − 2

)2

r2
0t

−2(N−1)
N−2 Ki(r0t

−1
N−2 ),

gi(t) = wN

(
1

N − 2

)
rN0 t

−2(N−1)
N−2 li(r0t

−1
N−2 ),

where ai ∈ C((0, 1), [0,∞)) is such that
∫ 1

0
sαi(1 − s)βiai(s)ds < ∞ for some

αi, βi ∈ (0, 1) and a nonnegative function gi ∈ L1(0, 1) is such that 0 <∫ 1

0
sgi(s)ds < 1 for each i = 1, 2. We know that the existence of positive solu-

tions for the system (2) guarantees the existence of positive radial solutions for
(1). Hence we focus on the system (2) to investigate solutions for (1).

Nonlocal boundary value problems have been widely studied especially on
a compact interval. The authors in [11] and [12] have established extensive
works of nonlocal boundary value problems involving integral conditions. Some
existence results are considered in [1], [2], [3], [8], [9] and [13] by applying the
fixed point theorem, mixed monotone method, monotone iterative method and
fixed point index under the condition either fi(0, 0) = 0 or f(0, 0) > 0. In [15],
the existence of positive solutions for a semipositone (i.e.fi(0, 0) < 0) differen-
tial system has been established when the boundary condition is local. To the
best of our knowledge, the existence of a positive solution for the semipositone
system with nonlocal boundary condition has not been treated. In this paper,
we study the existence of a positive solution for a semipositone system with
integral boundary conditions when a parameter involved in the system varies.
We establish our result by sub and super solution argument.
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In this article, we assume the following hypotheses on fi for i = 1, 2.

(H1) f1(t, s) and f2(t, s) are quasimonotone increasing with respect to s and
t, respectively, (i.e., f1(t, s1) ≤ f1(t, s2) for s1 ≤ s2 and f2(t1, s) ≤
f2(t2, s) for t1 ≤ t2).

(H2) fi(0, 0) < 0, for i = 1, 2.

(H3) lim
u+v→∞

fi(u, v) =∞ and fi,∞ := lim
u+v→∞

fi(u, v)

u+ v
= 0, for i = 1, 2.

(H4) ai := inft∈(0,1) ai(t) > 0 and there exist d > 0 and γ ∈ (0, 1) such that

ai(t) ≤
d

tγ
for t ∈ (0, 1) and i = 1, 2.

Now we state our main result precisely.

Theorem 1.1. Assume that (H1) ∼ (H4). The problem (2) has at least one
positive solution for λ >> 1.

For the problem (1), we have the following corresponding result.

Corollary 1.2. Assume that (H1) ∼ (H3) and

(H4′) Ki := infr∈(r0,∞) r
2(N−2)Ki(r) > 0 and there exist d̃ > 0 and η ∈

(0, N − 2) such that

Ki(t) ≤
d̃

rN+η
for r ∈ (r0,∞) and i = 1, 2.

The problem (1) has at least one positive radial solution for λ >> 1.

The paper is organized as follows: In the next section we introduce the sub
and super solution theorem. Section 3 is devoted to the proof of the main result,
Theorem 1.1.

2. Prelimiaries

We introduce a theorem for sub and supersolutions to the system (2). First,
we state the following definition of subsolution and supersolution of the system
(2).

Definition 1. We say that (ψ1, ψ2) is a subsolution of problem (2) if (ψ1, ψ2) ∈
C2(0, 1)× C2(0, 1) with satisfying

−ψ′′1 (t) ≤ λa1(t)f1(ψ1(t), ψ2(t)), t ∈ (0, 1),

−ψ′′2 (t) ≤ λa2(t)f2(ψ1(t), ψ2(t)), t ∈ (0, 1),

ψ1(0) ≤ 0, ψ2(0) ≤ 0,

ψ1(1) ≤
∫ 1

0
g1(s)ψ2(s)ds,

ψ2(1) ≤
∫ 1

0
g2(s)ψ1(s)ds.
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We also say that (ζ1, ζ2) is a supersolution of problem (2) if (ζ1, ζ2) ∈ C2(0, 1)×
C2(0, 1) with satisfying the reverse of the above inequalities.

Theorem 2.1. Assume that (H1) and there exist a subsolution (ψ1, ψ2) and a
supersolution (ζ1, ζ2) of the problem (2) such that (ψ1(t), ψ2(t)) ≤ (ζ1(t), ζ2(t))
for all t ∈ [0, 1]. Then (2) has at least one solution (u, v) such that

(ψ1(t), ψ2(t)) ≤ (u(t), v(t)) ≤ (ζ1(t), ζ2(t)) for all t ∈ [0, 1].

Proof. See the Appendix in [8]. �

3. Proof of Theorem 1.1

Lemma 3.1. Suppose that (H3) holds. Let us define

f̃i(s, t) = max
(u,v)∈[0,s]×[0,t]

fi(u, v) for each (s, t) ∈ [0,∞)× [0,∞).

Then the followings are true: for each i = 1, 2,

(i) fi(u, v) ≤ f̃i(u, v) for all (u, v) ∈ [0,∞)× [0,∞),

(ii) f̃i is nondecreasing (i.e., f̃i(s1, t1) ≤ f̃i(s2, t2) for (s1, t1) ≤ (s2, t2)),

(iii) lim
u+v→∞

f̃i(u, v) =∞ and

(iv) f̃i,∞ := lim
u+v→∞

f̃i(u, v)

u+ v
= 0.

Proof. It is obvious that fi(u, v) ≤ f̃i(u, v) for each (u, v) ∈ [0,∞)× [0,∞). Let

(s1, t1), (s2, t2) ∈ [0,∞)× [0,∞) be with (s1, t1) ≤ (s2, t2). As [0, s1]× [0, t1] ⊂

[0, s2] × [0, t2], we know f̃i(s1, t1) ≤ f̃i(s2, t2). Thus, f̃ is nondecreasing for

each i = 1, 2. Next, since lim
u+v→∞

fi(u, v) =∞ and fi(u, v) ≤ f̃i(u, v) for all

(u, v) ∈ [0,∞)× [0,∞), we have lim
u+v→∞

f̃i(u, v) =∞. Now, it remains to show

that f̃i,∞ = lim
u+v→∞

f̃i(u, v)

u+ v
= 0. From (H3), for given ε > 0, there exists K > 0

such that
fi(u, v)

u+ v
< ε for u+ v > K. (3)

We take a setD := {(s, t) ∈ [0,∞)×[0,∞) | s+t ≤ K } and letMi := max
(s,t)∈D

fi(s, t),

and then we define hi : [0,∞)× [0,∞)→ [0,∞) by hi(s, t) = max{ε(s+t), Mi}.
Now, we claim that

hi(s, t) ≥ f̃i(s, t) for all (s, t) ∈ [0,∞)× [0,∞).

Indeed, if (s, t) ∈ D, we find that

hi(s, t) ≥Mi = max
(u,v)∈D

fi(u, v) ≥ max
(u,v)∈[0,s]×[0,t]

fi(u, v) = f̃i(s, t)
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since [0, s]× [0, t] ⊂ D from (s, t) ∈ D. If (s, t) ∈ Dc ∩ [0,∞)× [0,∞), we obtain

hi(s, t) = max{ε(s+ t), Mi} = max{ max
(u,v)∈[0,s]×[0,t]

ε(u+ v), Mi}

≥ max{ max
(u,v)∈Dc∩([0,s]×[0,t])

ε(u+ v), Mi}

> max{ max
(u,v)∈Dc∩([0,s]×[0,t])

fi(u, v), max
(u,v)∈D

fi(u, v)}

≥ max{ max
(u,v)∈Dc∩([0,s]×[0,t])

fi(u, v), max
(u,v)∈D∩([0,s]×[0,t])

fi(u, v)}

= f̃i(s, t),

where we used (3) in the second inequality. Choosing N > 0 such that εN >
max{M1,M2}, it follows that for u+ v > N,

f̃i(u, v)

u+ v
≤ hi(u, v)

u+ v
=
ε(u+ v)

u+ v
= ε.

�

Lemma 3.2. Suppose that (H2), (H3) and (H4) hold. Then there exists a
subsolution (ψ1, ψ2) of the problem (2) for λ >> 1.

Proof. Consider the following boundary value problem{
−φ′′(t) = λφ(t), t ∈ (0, 1),

φ(0) = 0 = φ(1).
(4)

Let φ1 ∈ C2[0, 1] be the eigenfunction corresponding to the first eigenvalue λ1

of (4) such that φ1(t) > 0; t ∈ (0, 1). Then, there exists d1 > 0 such that

0 < φ1(t) ≤ d1t(1− t) for t ∈ (0, 1). (5)

Let σ ∈ (1, 2− γ), ε > 0, m > 0 and µ > 0 be such that

−m > [λ1σφ
2
1 − σ(σ − 1)|φ′1|2] in (0, ε] ∪ [1− ε, 1) and (6)

φ1 > µ in (ε, 1− ε). (7)

This is possible since φ1 = 0 and |φ′1| > 0 at t = 0, 1.

Let us denote fi := min
(s,t)∈[0,∞)×[0,∞)

fi(s, t). Clearly, fi < 0 for each i = 1, 2.

Now we define (ψ1, ψ2) = (λk0φ
σ
1 , λk0φ

σ
1 ), where k0 > 0 is chosen so that

−k0 <
d2−σ

1 d

m
min{f1, f2}. Then, we have −ψ′i = −λk0σφ

σ−1
1 φ′1, which yields

−ψ′′i = −λk0σ(σ−1)φσ−2
1 |φ′1|2−λk0σφ

σ−1
1 φ′′1 = λ

[
λ1k0σφ

σ
1 − k0σ(σ − 1)

|φ′1|2

φ2−σ
1

]
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as φ′′1 = −λ1φ1. For t ∈ (0, ε], it follows

−ψ′′i = λ

[
λ1k0σφ

σ
1 − k0σ(σ − 1)

|φ′1|2

φ2−σ
1

]
=

λk0

φ2−σ
1

[
λ1σφ

2
1 − σ(σ − 1)|φ′1|2

]
≤ −λk0m

φ2−σ
1

≤ −λk0m

d2−σ
1 t2−σ(1− t)2−σ

≤ −λk0m

d2−σ
1 tγ

≤ −λk0ai(t)m

d2−σ
1 d

≤ λai(t) min{f1, f2}
≤ λai(t)fi(ψ1, ψ2),

using (5), (6) and the condition (H4). A similar argument holds for t ∈ [1−ε, 1).
Let t ∈ (ε, 1− ε). As (7) and lim

u+v→∞
fi(u, v) =∞, it holds

fi(λk0φ
σ
1 (t), λk0φ

σ
1 (t)) ≥ 1

ai
λ1k0σφ

σ
1 (t) for λ >> 1.

Thus, for such a λ >> 1, we obtain

−ψ′′i = λ

[
λ1k0σφ

σ
1 − k0σ(σ − 1)

|φ′1|2

φ2−σ
1

]
≤ λλ1k0σφ

σ
1 (t)

≤ λaifi(λk0φ
σ
1 (t), λk0φ

σ
1 (t))

≤ λai(t)fi(ψ1, ψ2).

Also, it is easy to see ψi(0) = λk0φ
σ
1 (0) = 0 and

ψ1(1) = λk0φ
σ
1 (1) = 0 ≤

∫ 1

0

g1(s)ψ2(s)ds

ψ2(1) = λk0φ
σ
1 (1) = 0 ≤

∫ 1

0

g2(s)ψ1(s)ds

since gi and ψi are nonnegative functions. Thus, (ψ1, ψ2) is a subsolution of the
problem (2) for λ >> 1. �

Lemma 3.3. Assume (H3). For each λ > 0, there exists a positive real number
M(λ) >> 1 such that (M(λ)e1,M(λ)e2) is a supersolution of problem (2), where
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(e1, e2) is the unique positive solution of

−e′′1(t) = a1(t), t ∈ (0, 1),

−e′′2(t) = a2(t), t ∈ (0, 1),

e1(0) = 0 = e2(0),

e1(1) =
∫ 1

0
g1(s)e2(s)ds,

e2(1) =
∫ 1

0
g2(s)e1(s)ds,

and the exact form of (e1, e2) is in [10].

Proof. From Lemma 3.1, we recall that fi(u, v) ≤ f̃i(u, v) for all (u, v) ∈ [0,∞)×

[0,∞), f̃i are nondecreasing, lim
u+v→∞

f̃i(u, v) =∞ and f̃i,∞ = lim
u+v→∞

f̃i(u, v)

u+ v
= 0,

for i = 1, 2. Thus we can choose M(λ) >> 1 such that

1

λ(||e1||∞ + ||e2||∞)
≥ f̃i(M(λ)||e1||∞,M(λ)||e2||∞)

M(λ)(||e1||∞ + ||e2||∞)
.

Now we define (ζ1, ζ2) = (M(λ)e1,M(λ)e2). Then it follows

−ζ ′′i (t) = −M(λ)e′′i (t) = M(λ)ai(t)

≥ λai(t)f̃i(M(λ)||e1||∞,M(λ)||e2||∞)

≥ λai(t)f̃i(M(λ)e1(t),M(λ)e2(t))

≥ λai(t)fi(ζ1(t), ζ2(t))

Also, it is easy to see that ζi(0) = M(λ)ei(0) = 0 and

ζ1(1) = M(λ)e1(1) = M(λ)

∫ 1

0

g1(s)e2(s)ds =

∫ 1

0

g1(s)ζ2(s)ds

ζ2(1) = M(λ)e2(1) = M(λ)

∫ 1

0

g2(s)e1(s)ds =

∫ 1

0

g2(s)ζ1(s)ds.

Thus, (M(λ)e1,M(λ)e2) is a supersolution of problem (2). �

Proof of Theorem 1.1

Proof. For λ >> 1, by Lemma 3.2, there exists a subsolution (ψ1, ψ2) of problem
(2) and we can choose M(λ) >> 1 such that (ζ1, ζ2) = (M(λ)e1,M(λ)e2)
is a supersolution of (2) and (ψ1, ψ2) ≤ (M(λ)e1,M(λ)e2) from Lemma 3.3.
Therefore, Theorem 2.1 concludes that (2) has at least one positive solution for
λ >> 1. �
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