• Title/Summary/Keyword: semi-supervised

Search Result 172, Processing Time 0.026 seconds

Performance Change accroding to Data Set Size Change in Semi-Supervised Learning based Object Detection (준지도 학습 기반 객체 탐지 모델에서 데이터셋 변화에 따른 성능 변화)

  • Seungsoo Yu;Wonjun Hwang
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.11a
    • /
    • pp.88-90
    • /
    • 2022
  • Semi Supervised Learning 은 일부의 data 에는 labeling 을 하고 나머지 data 에는 labeling 을 안한채로 학습을 진행하는 방법이다. Object Detection 은 이미지에서 여러개의 객체들의 대한 위치를 여러개의 바운딩 박스로 지정해서 찾는 Computer Vision task 이다. 당연하게도, model training 단계에서 사용되는 data set 의 크기가 크고 객체가 많을 수록 일반적으로 model 의 성능이 좋아 질 것이다. 하지만 실험 환경에 따라 data set 을 잘 확보하지 못하던가, 실험 장치가 데이터 셋을 감당하지 못하는 등의 문제가 발생 할 수 있다. 그렇기에 본 논문에서는 semi supervised learning based object detection model 을 알아보고 data set 의 크기를 조절해가며 modle 을 training 시킨 뒤 data set 의 크기에 따라 성능이 어떻게 변화하는 지를 알아 볼 것이다.

  • PDF

Deep Learning Based Monocular Depth Estimation: Survey

  • Lee, Chungkeun;Shim, Dongseok;Kim, H. Jin
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.10 no.4
    • /
    • pp.297-305
    • /
    • 2021
  • Monocular depth estimation helps the robot to understand the surrounding environments in 3D. Especially, deep-learning-based monocular depth estimation has been widely researched, because it may overcome the scale ambiguity problem, which is a main issue in classical methods. Those learning based methods can be mainly divided into three parts: supervised learning, unsupervised learning, and semi-supervised learning. Supervised learning trains the network from dense ground-truth depth information, unsupervised one trains it from images sequences and semi-supervised one trains it from stereo images and sparse ground-truth depth. We describe the basics of each method, and then explain the recent research efforts to enhance the depth estimation performance.

A Semi-supervised Dimension Reduction Method Using Ensemble Approach (앙상블 접근법을 이용한 반감독 차원 감소 방법)

  • Park, Cheong-Hee
    • The KIPS Transactions:PartD
    • /
    • v.19D no.2
    • /
    • pp.147-150
    • /
    • 2012
  • While LDA is a supervised dimension reduction method which finds projective directions to maximize separability between classes, the performance of LDA is severely degraded when the number of labeled data is small. Recently semi-supervised dimension reduction methods have been proposed which utilize abundant unlabeled data and overcome the shortage of labeled data. However, matrix computation usually used in statistical dimension reduction methods becomes hindrance to make the utilization of a large number of unlabeled data difficult, and moreover too much information from unlabeled data may not so helpful compared to the increase of its processing time. In order to solve these problems, we propose an ensemble approach for semi-supervised dimension reduction. Extensive experimental results in text classification demonstrates the effectiveness of the proposed method.

Utilizing Mean Teacher Semi-Supervised Learning for Robust Pothole Image Classification

  • Inki Kim;Beomjun Kim;Jeonghwan Gwak
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.5
    • /
    • pp.17-28
    • /
    • 2023
  • Potholes that occur on paved roads can have fatal consequences for vehicles traveling at high speeds and may even lead to fatalities. While manual detection of potholes using human labor is commonly used to prevent pothole-related accidents, it is economically and temporally inefficient due to the exposure of workers on the road and the difficulty in predicting potholes in certain categories. Therefore, completely preventing potholes is nearly impossible, and even preventing their formation is limited due to the influence of ground conditions closely related to road environments. Additionally, labeling work guided by experts is required for dataset construction. Thus, in this paper, we utilized the Mean Teacher technique, one of the semi-supervised learning-based knowledge distillation methods, to achieve robust performance in pothole image classification even with limited labeled data. We demonstrated this using performance metrics and GradCAM, showing that when using semi-supervised learning, 15 pre-trained CNN models achieved an average accuracy of 90.41%, with a minimum of 2% and a maximum of 9% performance difference compared to supervised learning.

Crop Classification for Inaccessible Areas using Semi-Supervised Learning and Spatial Similarity - A Case Study in the Daehongdan Region, North Korea - (준감독 학습과 공간 유사성을 이용한 비접근 지역의 작물 분류 - 북한 대홍단 지역 사례 연구 -)

  • Kwak, Geun-Ho;Park, No-Wook;Lee, Kyung-Do;Choi, Ki-Young
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.5_2
    • /
    • pp.689-698
    • /
    • 2017
  • In this paper, a new classification method based on the combination of semi-supervised learning with spatial similarity of adjacent pixels is presented for crop classification in inaccessible areas. Iterative classification based on semi-supervised learning is applied to extract reliable training data from both the initial classification result with a small number of training data, and classification results of adjacent pixels are also considered to extract new training pixels with less uncertainty. To evaluate the applicability of the proposed method, a case study of the classification of field crops was carried out using multi-temporal Landsat-8 OLI acquired in the Daehongdan region, North Korea. From a case study, the misclassification of crops and forests, and isolated pixels in the initial classification result were greatly reduced by applying the proposed semi-supervised learning method. In addition, the combination of classification results of adjacent pixels for the extraction of new training data led to the great reduction of both misclassification results and isolated pixels, compared to the initial classification and traditional semi-supervised learning results. Therefore, it is expected that the proposed method would be effectively applied to classify areas in which it is difficult to collect sufficient training data.

Diagnosis of Scoliosis Using Chest Radiographs with a Semi-Supervised Generative Adversarial Network (준지도학습 방법을 이용한 흉부 X선 사진에서 척추측만증의 진단)

  • Woojin Lee;Keewon Shin;Junsoo Lee;Seung-Jin Yoo;Min A Yoon;Yo Won Choi;Gil-Sun Hong;Namkug Kim;Sanghyun Paik
    • Journal of the Korean Society of Radiology
    • /
    • v.83 no.6
    • /
    • pp.1298-1311
    • /
    • 2022
  • Purpose To develop and validate a deep learning-based screening tool for the early diagnosis of scoliosis using chest radiographs with a semi-supervised generative adversarial network (GAN). Materials and Methods Using a semi-supervised learning framework with a GAN, a screening tool for diagnosing scoliosis was developed and validated through the chest PA radiographs of patients at two different tertiary hospitals. Our proposed method used training GAN with mild to severe scoliosis only in a semi-supervised manner, as an upstream task to learn scoliosis representations and a downstream task to perform simple classification for differentiating between normal and scoliosis states sensitively. Results The area under the receiver operating characteristic curve, negative predictive value (NPV), positive predictive value, sensitivity, and specificity were 0.856, 0.950, 0.579, 0.985, and 0.285, respectively. Conclusion Our deep learning-based artificial intelligence software in a semi-supervised manner achieved excellent performance in diagnosing scoliosis using the chest PA radiographs of young individuals; thus, it could be used as a screening tool with high NPV and sensitivity and reduce the burden on radiologists for diagnosing scoliosis through health screening chest radiographs.

Batch mode Active learning in graph-based semi-supervised learning (그래프 기반 반감독 학습에서 배치모드 능동적 학습)

  • Park, Cheong-Hee
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06b
    • /
    • pp.495-497
    • /
    • 2012
  • 클래스라벨에 대한 정보를 가진 데이터가 매우 적을 때 클래스라벨 정보가 없는 데이터로부터의 정보를 학습에 활용하는 반감독학습(semi-supervised learning) 방법들 중에서 데이터 샘플들 간의 유사도를 나타내는 그래프를 이용하는 방법이 잘 알려져 있다. 본 논문에서는 그래프 기반 반감독 학습에서 배치 모드 능동적 학습을 위한 방법을 제안하고 실제 데이터를 이용한 실험결과를 통해 제안된 방법의 성능을 입증한다.

Response Modeling with Semi-Supervised Support Vector Regression (준지도 지지 벡터 회귀 모델을 이용한 반응 모델링)

  • Kim, Dong-Il
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.9
    • /
    • pp.125-139
    • /
    • 2014
  • In this paper, I propose a response modeling with a Semi-Supervised Support Vector Regression (SS-SVR) algorithm. In order to increase the accuracy and profit of response modeling, unlabeled data in the customer dataset are used with the labeled data during training. The proposed SS-SVR algorithm is designed to be a batch learning to reduce the training complexity. The label distributions of unlabeled data are estimated in order to consider the uncertainty of labeling. Then, multiple training data are generated from the unlabeled data and their estimated label distributions with oversampling to construct the training dataset with the labeled data. Finally, a data selection algorithm, Expected Margin based Pattern Selection (EMPS), is employed to reduce the training complexity. The experimental results conducted on a real-world marketing dataset showed that the proposed response modeling method trained efficiently, and improved the accuracy and the expected profit.

Graph Construction Based on Fast Low-Rank Representation in Graph-Based Semi-Supervised Learning (그래프 기반 준지도 학습에서 빠른 낮은 계수 표현 기반 그래프 구축)

  • Oh, Byonghwa;Yang, Jihoon
    • Journal of KIISE
    • /
    • v.45 no.1
    • /
    • pp.15-21
    • /
    • 2018
  • Low-Rank Representation (LRR) based methods are widely used in many practical applications, such as face clustering and object detection, because they can guarantee high prediction accuracy when used to constructing graphs in graph - based semi-supervised learning. However, in order to solve the LRR problem, it is necessary to perform singular value decomposition on the square matrix of the number of data points for each iteration of the algorithm; hence the calculation is inefficient. To solve this problem, we propose an improved and faster LRR method based on the recently published Fast LRR (FaLRR) and suggests ways to introduce and optimize additional constraints on the underlying optimization goals in order to address the fact that the FaLRR is fast but actually poor in classification problems. Our experiments confirm that the proposed method finds a better solution than LRR does. We also propose Fast MLRR (FaMLRR), which shows better results when the goal of minimizing is added.

A study on the performance improvement of learning based on consistency regularization and unlabeled data augmentation (일치성규칙과 목표값이 없는 데이터 증대를 이용하는 학습의 성능 향상 방법에 관한 연구)

  • Kim, Hyunwoong;Seok, Kyungha
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.2
    • /
    • pp.167-175
    • /
    • 2021
  • Semi-supervised learning uses both labeled data and unlabeled data. Recently consistency regularization is very popular in semi-supervised learning. Unsupervised data augmentation (UDA) that uses unlabeled data augmentation is also based on the consistency regularization. The Kullback-Leibler divergence is used for the loss of unlabeled data and cross-entropy for the loss of labeled data through UDA learning. UDA uses techniques such as training signal annealing (TSA) and confidence-based masking to promote performance. In this study, we propose to use Jensen-Shannon divergence instead of Kullback-Leibler divergence, reverse-TSA and not to use confidence-based masking for performance improvement. Through experiment, we show that the proposed technique yields better performance than those of UDA.