References
- Bernstein, L.S., X. Jin, B. Gregor, and S.M. Adler-Golden, 2012. Quick atmospheric correction code: algorithm description and recent upgrades, Optical Engineering, 51(11): 1-11. https://doi.org/10.1117/1.OE.51.11.114002
- Breiman, L., 2001. Random forests, Machine Learning, 45(1): 5-32. https://doi.org/10.1023/A:1010933404324
- Bruzzone, L., M. Chi, and M. Marconcini, 2006. A novel transductive SVM for semisupervised classification of remote-sensing images, IEEE Transactions on Geoscience and Remote Sensing, 44(11): 3363-3373. https://doi.org/10.1109/TGRS.2006.877950
- Bruzzone, L., and C. Persello, 2009. A novel contextsensitive semisupervised SVM classifier robust to mislabeled training samples, IEEE Transactions on Geoscience and Remote Sensing, 47(7): 2142-2154. https://doi.org/10.1109/TGRS.2008.2011983
- Camps-Valls, G., T.V.B. Marsheva, and D. Zhou, 2007. Semi-supervised graph-based hyperspectral image classification, IEEE Transactions on Geoscience and Remote Sensing, 45(10): 3044-3054. https://doi.org/10.1109/TGRS.2007.895416
- FAO/WFP, 2012. FAO/WFP Crop and Food Security Assessment Mission to the Democratic People's Republic of Korea, FAO/WEP, Rome, Italy.
- Hong, S.Y., B.-K. Min, J.-M. Lee, Y. Kim, and K. Lee, 2012. Estimation of paddy field area in North Korea using RapidEye images, Korean Journal of Soil Science and Fertilizer, 45(6): 1194-1202 (in Korean with English Abstract). https://doi.org/10.7745/KJSSF.2012.45.6.1194
- Hong, S.Y., H.-J. Park, K. Jang, S.-I. Na, S.-C. Baek, K.-D. Lee, and J.-B. Ahn, 2015. Status of rice paddy field and weather anomaly in the spring of 2015 in DPRK, Korean Journal of Soil Science and Fertilizer, 48(5): 361-371 (in Korean with English Abstract). https://doi.org/10.7745/KJSSF.2015.48.5.361
- KIGAM, 2007. Spectral Library for Land Cover Materials, KIGAM, Daejeon, Korea (in Korean).
- Kim, Y., K.-D. Lee, S.-I. Na, S.-Y. Hong, N.-W. Park, and H.Y. Yoo, 2016. MODIS data-based crop classification using selective hierarchical classification, Korean Journal of Remote Sensing, 32(3): 235-244 (in Korean with English Abstract). https://doi.org/10.7780/kjrs.2016.32.3.3
- Kwak, G.-H., H.Y. Yoo, and N.-W. Park, 2016. Classification of crop areas in North Korea using multi-temporal Landsat images: a case study in Daehongdan, Proc. of the KSRS Fall Conference 2016, Chungju, Korea, Nov. 3-4, pp. 368-371 (in Korean).
- Liu, B., X. Yu, P. Zhang, X. Tan, A. Yu, and Z. Xue, 2017. A semi-supervised convolutional neural network for hyperspectral image classification, Remote Sensing Letters, 8(9): 839-848. https://doi.org/10.1080/2150704X.2017.1331053
- Ma, X., H. Wang, and J. Wang, 2016. Semisupervised classification for hyperspectral image based on multi-decision labeling and deep feature learning, ISPRS Journal of Photogrammetry and Remote Sensing, 120: 99-107. https://doi.org/10.1016/j.isprsjprs.2016.09.001
- Mathur, A., and G.M. Foody, 2008. Crop classification by support vector machine with intelligently selected training data for an operational application, International Journal of Remote Sensing, 29(8): 2227-2240. https://doi.org/10.1080/01431160701395203
- Romaszewski, M., P. Glomb, and M. Cholewa, 2016. Semi-supervised hyperspectral classification from a small number of training samples using a cotraining approach, ISPRS Journal of Photogrammetry and Remote Sensing, 121: 60-76. https://doi.org/10.1016/j.isprsjprs.2016.08.011
- Samat, A., J. Li, S. Liu, P. Du, Z. Miao, and J. Luo, 2016. Improved hyperspectral image classification by active learning using pre-designed mixed pixels, Pattern Recognition, 51: 43-58. https://doi.org/10.1016/j.patcog.2015.08.019
- Tan, K., E. Li, Q. Du, and P. Du, 2014. An efficient semisupervised classification approach for hyperspectral imagery, ISPRS Journal of Photogrammetry and Remote Sensing, 97: 36-45. https://doi.org/10.1016/j.isprsjprs.2014.08.003
- Tuia, D., F. Ratle, F. Pacifici, M.F. Kanevski, and W.J. Emery, 2009. Active learning methods for remote sensing image classification, IEEE Transactions on Geoscience and Remote Sensing, 47(7): 2218-2232. https://doi.org/10.1109/TGRS.2008.2010404
- Tuia, D., E. Pasolli, and W.J. Emery, 2011. Using active learning to adapt remote sensing image classifiers, Remote Sensing of Environment, 115(9): 2232-2242. https://doi.org/10.1016/j.rse.2011.04.022
- Wang, Z., B. Du, L. Zhang, and L. Zhang, 2016. A batch-mode active learning framework by querying discriminative and representative samples for hyperspectral image classification, Neurocomputing, 179: 88-100. https://doi.org/10.1016/j.neucom.2015.11.062
- Wardlow, B.D., L. S. Egbert, and J.H. Kastens, 2007. Analysis of time-series MODIS 250 m vegetation index data for crop classification in the US Central Great Plains, Remote Sensing of Environment, 108(3): 290-310. https://doi.org/10.1016/j.rse.2006.11.021