Acknowledgement
본 연구는 2022년 과학기술정통신부 및 정보통신기획평가원의 SW 중심대학사업의 연구결과로 수행되었음 (2022-0-01077)
Semi Supervised Learning 은 일부의 data 에는 labeling 을 하고 나머지 data 에는 labeling 을 안한채로 학습을 진행하는 방법이다. Object Detection 은 이미지에서 여러개의 객체들의 대한 위치를 여러개의 바운딩 박스로 지정해서 찾는 Computer Vision task 이다. 당연하게도, model training 단계에서 사용되는 data set 의 크기가 크고 객체가 많을 수록 일반적으로 model 의 성능이 좋아 질 것이다. 하지만 실험 환경에 따라 data set 을 잘 확보하지 못하던가, 실험 장치가 데이터 셋을 감당하지 못하는 등의 문제가 발생 할 수 있다. 그렇기에 본 논문에서는 semi supervised learning based object detection model 을 알아보고 data set 의 크기를 조절해가며 modle 을 training 시킨 뒤 data set 의 크기에 따라 성능이 어떻게 변화하는 지를 알아 볼 것이다.
본 연구는 2022년 과학기술정통신부 및 정보통신기획평가원의 SW 중심대학사업의 연구결과로 수행되었음 (2022-0-01077)