Acknowledgement
We would like to thank Editage (www.editage.co.kr) for English language editing.
References
- Kim H, Kim HS, Moon ES, Yoon CS, Chung TS, Song HT, et al. Scoliosis imaging: what radiologists should know. Radiographics 2010;30:1823-1842 https://doi.org/10.1148/rg.307105061
- Roach JW. Adolescent idiopathic scoliosis. Orthop Clin North Am 1999;30:353-365 https://doi.org/10.1016/S0030-5898(05)70092-4
- Baert AL. Spinal imaging: diagnostic imaging of the spine and spinal cord. Berlin: Springer Science & Business Media 2007
- Silva FE, Lenke LG. Adolescent idiopathic scoliosis. In Errico TJ, Lonner BS, Moulton AW, eds. Surgical management of spinal deformities. Philadelphia: Saunders Elsevier, 2009:97-118
- Weinstein SL, Zavala DC, Ponseti IV. Idiopathic scoliosis: long-term follow-up and prognosis in untreated patients. J Bone Joint Surg Am 1981;63:702-712 https://doi.org/10.2106/00004623-198163050-00003
- Malfair D, Flemming AK, Dvorak MF, Munk PL, Vertinsky AT, Heran MK, et al. Radiographic evaluation of scoliosis: review. AJR Am J Roentgenol 2010;194:S8-S22 https://doi.org/10.2214/AJR.07.7145
- Pruijs JE, Hageman MA, Keessen W, van der Meer R, van Wieringen JC. Variation in Cobb angle measurements in scoliosis. Skeletal Radiol 1994;23:517-520 https://doi.org/10.1007/BF00223081
- Morrissy RT, Goldsmith GS, Hall EC, Kehl D, Cowie GH. Measurement of the Cobb angle on radiographs of patients who have scoliosis. Evaluation of intrinsic error. J Bone Joint Surg Am 1990;72:320-327 https://doi.org/10.2106/00004623-199072030-00002
- Galbusera F, Niemeyer F, Wilke HJ, Bassani T, Casaroli G, Anania C, et al. Fully automated radiological analysis of spinal disorders and deformities: a deep learning approach. Eur Spine J 2019;28:951-960 https://doi.org/10.1007/s00586-019-05944-z
- Alharbi RH, Alshaye MB, Alkanhal MM, Alharbi NM, Alzahrani MA, Alrehaili OA.Deep learning based algorithm for automatic scoliosis angle measurement. Proceedings of 2020 3rd International Conference on Computer Applications & Information Security (ICCAIS); 2020 Mar 19-21; Riyadh, Saudi Arabia: IEEE; 2020:1-5
- Tan Z, Yang K, Sun Y, Wu B, Tao H, Hu Y, et al. An automatic scoliosis diagnosis and measurement system based on deep learning. Proceedings of the ROBIO 2018: IEEE International Conference on Robotics and Biomimetics; 2018 Dec 12-15; Kuala Lumpur, Malaysia: IEEE; 2018:439-443
- Reza AM. Realization of the contrast limited adaptive histogram equalization (CLAHE) for real-time image enhancement. J VLSI Signal Process Syst Signal Image Video Technol 2004;38:35-44 https://doi.org/10.1023/B:VLSI.0000028532.53893.82
- Karras T, Aittala M, Hellsten J, Laine S, Lehtinen J, Aila T. Training generative adversarial networks with limited data. arXiv 2006.06676 [Preprint]. 2020 [cited 2020 October 7]. Available at. https://arxiv.org/abs/2006.06676
- Gardner MW, Dorling SR. Artificial neural networks (the multilayer perceptron)-a review of applications in the atmospheric sciences. Atmos Environ 1998;32:2627-2636 https://doi.org/10.1016/S1352-2310(97)00447-0
- Liu Z, Luo P, Wang X, Tang X. Deep learning face attributes in the wild. In Proceedings of the IEEE International Conference on Computer Vision; 2015 December 13-16; Santiago, Chile: IEEE; 2015:3730-3738
- Karras T, Laine S, Aila T. A style-based generator architecture for generative adversarial networks. Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR); 2019 Jun 16-20; Long Beach, CA, USA: IEEE; 2019:4401-4410
- Heusel M, Ramsauer H, Unterthiner T, Nessler B, Hochreiter S. Gans trained by a two time-scale update rule converge to a local nash equilibrium. Advances in neural information processing systems. Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS 2017); 2017 Dec 4-9; Long Beach, CA, USA: NIPS; 2017:30
- Kingma DP, Ba J. Adam: a method for stochastic optimization. ArXiv 1412.6980 [Preprint]. 2014 [cited 2019 May 1]. Available at. https://arxiv.org/abs/1412.6980
- He K, Zhang X, Ren S, Sun J. Identity mappings in deep residual networks. ECCV 2016. Lecture notes in computer science, vol 9908. Cham: Springer 2016
- Tu Y, Wang N, Tong F, Chen H. Automatic measurement algorithm of scoliosis Cobb angle based on deep learning. J Phys Conf Ser 2019;1187:042100
- Liu T, Yang Y, Wang Y, Sun M, Fan W, Wu C, et al. Spinal curve assessment of idiopathic scoliosis with a small dataset via a multi-scale keypoint estimation approach. Adjunct Proceedings of the 2020 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2020 ACM International Symposium on Wearable Computers; 2020 Sep 12-17; Virtual Event, Mexico: Association for Computing Machinery; 2020:665-670
- Kokabu T, Kanai S, Kawakami N, Uno K, Kotani T, Suzuki T, et al. An algorithm for using deep learning convolutional neural networks with three dimensional depth sensor imaging in scoliosis detection. Spine J 2021;21:980-987 https://doi.org/10.1016/j.spinee.2021.01.022
- Yang J, Zhang K, Fan H, Huang Z, Xiang Y, Yang J, et al. Development and validation of deep learning algorithms for scoliosis screening using back images. Commun Biol 2019;2:390
- Zenati H, Foo CS, Lecouat B, Manek G, Chandrasekhar VR. Efficient gan-based anomaly detection. ArXiv 1802.06222 [Preprint]. 2018 [cited 2019 May 1]. Available at. https://arxiv.org/abs/1802.06222
- Schlegl T, Seebock P, Waldstein SM, Langs G, Schmidt-Erfurth U. f-AnoGAN: fast unsupervised anomaly detection with generative adversarial networks. Med Image Anal 2019;54:30-44 https://doi.org/10.1016/j.media.2019.01.010
- Oh CH, Kim CG, Lee MS, Yoon SH, Park HC, Park CO. Usefulness of chest radiographs for scoliosis screening: a comparison with thoraco-lumbar standing radiographs. Yonsei Med J 2012;53:1183-1189 https://doi.org/10.3349/ymj.2012.53.6.1183
- Goldberg CJ, Moore DP, Fogarty EE, Dowling FE. Left thoracic curve patterns and their association with disease. Spine (Phila Pa 1976) 1999;24:1228-1233 https://doi.org/10.1097/00007632-199906150-00010
- Wu L, Qiu Y, Wang B, Zhu ZZ, Ma WW. The left thoracic curve pattern: a strong predictor for neural axis abnormalities in patients with "idiopathic" scoliosis. Spine (Phila Pa 1976) 2010;35:182-185 https://doi.org/10.1097/BRS.0b013e3181ba6623