• 제목/요약/키워드: seismic vibration control

검색결과 247건 처리시간 0.024초

Mitigation of motions of tall buildings with specific examples of recent applications

  • Kareem, Ahsan;Kijewski, Tracy;Tamura, Yukio
    • Wind and Structures
    • /
    • 제2권3호
    • /
    • pp.201-251
    • /
    • 1999
  • Flexible structures may experience excessive levels of vibration under the action of wind, adversely affecting serviceability and occupant comfort. To ensure the functional performance of a structure, various design modifications are possible, ranging from alternative structural systems to the utilization of passive and active control devices. This paper presents an overview of state-of-the-art measures that reduce the structural response of buildings, including a summary of recent work in aerodynamic tailoring and a discussion of auxiliary damping devices for mitigating the wind-induced motion of structures. In addition, some discussion of the application of such devices to improve structural resistance to seismic events is also presented, concluding with detailed examples of the application of auxiliary damping devices in Australia, Canada, China, Japan, and the United States.

Protective systems for high-technology facilities against microvibration and earthquake

  • Yang, Jann N.;Agrawal, Anil K.
    • Structural Engineering and Mechanics
    • /
    • 제10권6호
    • /
    • pp.561-575
    • /
    • 2000
  • Microvibration of high technology facilities, such as semiconductor plants and facilities with high precision equipments, due to nearby road and rail traffic has attracted considerable attention recently. In this paper, a preliminary study is conducted for the possible use of various protective systems and their performance for the reduction of microvibration. Simulation results indicate that passive base isolation systems, hybrid base isolation systems, passive floor isolation systems, and hybrid floor isolation systems are quite effective and practical. In particular, the performances of hybrid floor isolation systems are remarkable. Further, passive energy dissipation systems are not effective for the reduction of microvibration. Finally, the protections against both microvibration and earthquake are also investigated and presented.

Seismic protection of the benchmark highway bridge with passive hybrid control system

  • Saha, Arijit;Saha, Purnachandra;Patro, Sanjaya Kumar
    • Earthquakes and Structures
    • /
    • 제15권3호
    • /
    • pp.227-241
    • /
    • 2018
  • The present paper deals with the optimum performance of the passive hybrid control system for the benchmark highway bridge under the six earthquakes ground motion. The investigation is carried out on a simplified finite element model of the 91/5 highway overcrossing located in Southern California. A viscous fluid damper (known as VFD) or non-linear fluid viscous spring damper has been used as a passive supplement device associated with polynomial friction pendulum isolator (known as PFPI) to form a passive hybrid control system. A parametric study is considered to find out the optimum parameters of the PFPI system for the optimal response of the bridge. The effect of the velocity exponent of the VFD and non-linear FV spring damper on the response of the bridge is carried out by considering different values of velocity exponent. Further, the influences of damping coefficient and vibration period of the dampers are also examined on the response of the bridge. To study the effectiveness of the passive hybrid system on the response of the isolated bridge, it is compared with the corresponding PFPI isolated bridges. The investigation showed that passive supplement damper such as VFD or non-linear FV spring damper associated with PFPI system is significantly reducing the seismic response of the benchmark highway bridge. Further, it is also observed that non-linear FV spring damper hybrid system is a more promising strategy in reducing the response of the bridge compared to the VFD associated hybrid system.

Comparing type-1, interval and general type-2 fuzzy approach for dealing with uncertainties in active control

  • Farzaneh Shahabian Moghaddam;Hashem Shariatmadar
    • Smart Structures and Systems
    • /
    • 제31권2호
    • /
    • pp.199-212
    • /
    • 2023
  • Nowadays fuzzy logic in control applications is a well-recognized alternative, and this is thanks to its inherent advantages. Generalized type-2 fuzzy sets allow for a third dimension to capture higher order uncertainty and therefore offer a very powerful model for uncertainty handling in real world applications. With the recent advances that allowed the performance of general type-2 fuzzy logic controllers to increase, it is now expected to see the widespread of type-2 fuzzy logic controllers to many challenging applications in particular in problems of structural control, that is the case study in this paper. It should be highlighted that this is the first application of general type-2 fuzzy approach in civil structures. In the following, general type-2 fuzzy logic controller (GT2FLC) will be used for active control of a 9-story nonlinear benchmark building. The design of type-1 and interval type-2 fuzzy logic controllers is also considered for the purpose of comparison with the GT2FLC. The performance of the controller is validated through the computer simulation on MATLAB. It is demonstrated that extra design degrees of freedom achieved by GT2FLC, allow a greater potential to better model and handle the uncertainties involved in the nature of earthquakes and control systems. GT2FLC outperforms successfully a control system that uses T1 and IT2 FLCs.

MR감쇠기를 장착한 토글가새시스템을 이용한 건축구조물의 지진응답제어 (Seismic Response Control of a Building Structure Using Toggle-Brace System with an MR Damper)

  • 이상현;황재승;민경원;이명규
    • 한국전산구조공학회논문집
    • /
    • 제19권3호
    • /
    • pp.239-245
    • /
    • 2006
  • 본 연구에서는, 지진하중에 의해 구조물에 발생하는 진동을 제어하기 위하여 토글 시스템의 비선형성을 연구하고, 자기유변유체(MR) 감쇠기를 장착한 토글 가새시스템의 성능을 평가하였다. Bingham 모델로 표현되는 MR감쇠기의 제어력이 속도의 함수인 점을 고려하여, 토글 가새시스템에 의한 속도증폭계수를 계산하였고 토글 형태에 대한 증폭계수효과를 평가하였다. 특히 강한 지진하중에서 쉐브론과 대각가새 등의 전형적인 가새시스템에 장착된 MR감쇠기가 충분한 응답감소효과를 제공하지 못하는 경우에, 토글 가새시스템을 사용하여 제어성능을 크게 강화시키는 것을 수치해석 결과를 통하여 확인하였다.

Optimal assessment and location of tuned mass dampers for seismic response control of a plan-asymmetrical building

  • Desu, Nagendra Babu;Dutta, Anjan;Deb, S.K.
    • Structural Engineering and Mechanics
    • /
    • 제26권4호
    • /
    • pp.459-477
    • /
    • 2007
  • A bi-directional tuned mass damper (BTMD) in which a mass connected by two translational springs and two viscous dampers in two orthogonal directions has been introduced to control coupled lateral and torsional vibrations of asymmetric building. An efficient control strategy has been presented in this context to control displacements as well as acceleration responses of asymmetric buildings having asymmetry in both plan and elevation. The building is idealized as a simplified 3D model with two translational and a rotational degrees of freedom for each floor. The principles of rigid body transformation have been incorporated to account for eccentricity between center of mass and center of rigidity. The effective and robust design of BTMD for controlling the vibrations in structures has been presented. The redundancy of optimum design has been checked. Non dominated sorting genetic algorithm (NSGA) has been used for tuning optimum stages and locations of BTMDs and its parameters for control of vibration of seismically excited buildings. The optimal locations have been observed to be reasonably compact and practically implementable.

Seismic structural demands and inelastic deformation ratios: Sensitivity analysis and simplified models

  • Chikh, Benazouz;Laouami, Nacer;Mebarki, Ahmed;Leblouba, Moussa;Mehani, Youcef;Kibboua, Abderrahmane;Hadid, Mohamed;Benouar, Djillali
    • Earthquakes and Structures
    • /
    • 제13권1호
    • /
    • pp.59-66
    • /
    • 2017
  • Modern seismic codes rely on performance-based seismic design methodology which requires that the structures withstand inelastic deformation. Many studies have focused on the inelastic deformation ratio evaluation (ratio between the inelastic and elastic maximum lateral displacement demands) for various inelastic spectra. This paper investigates the inelastic response spectra through the ductility demand ${\mu}$, the yield strength reduction factor $R_y$, and the inelastic deformation ratio. They depend on the vibration period T, the post-to-preyield stiffness ratio ${\alpha}$, the peak ground acceleration (PGA), and the normalized yield strength coefficient ${\eta}$ (ratio of yield strength coefficient divided by the PGA). A new inelastic deformation ratio $C_{\eta}$ is defined; it is related to the capacity curve (pushover curve) through the coefficient (${\eta}$) and the ratio (${\alpha}$) that are used as control parameters. A set of 140 real ground motions is selected. The structures are bilinear inelastic single degree of freedom systems (SDOF). The sensitivity of the resulting inelastic deformation ratio mean values is discussed for different levels of normalized yield strength coefficient. The influence of vibration period T, post-to-preyield stiffness ratio ${\alpha}$, normalized yield strength coefficient ${\eta}$, earthquake magnitude, ruptures distance (i.e., to fault rupture) and site conditions is also investigated. A regression analysis leads to simplified expressions of this inelastic deformation ratio. These simplified equations estimate the inelastic deformation ratio for structures, which is a key parameter for design or evaluation. The results show that, for a given level of normalized yield strength coefficient, these inelastic displacement ratios become non sensitive to none of the rupture distance, the earthquake magnitude or the site class. Furthermore, they show that the post-to-preyield stiffness has a negligible effect on the inelastic deformation ratio if the normalized yield strength coefficient is greater than unity.

Shaking table test of pounding tuned mass damper (PTMD) on a frame structure under earthquake excitation

  • Lin, Wei;Wang, Qiuzhang;Li, Jun;Chen, Shanghong;Qi, Ai
    • Computers and Concrete
    • /
    • 제20권5호
    • /
    • pp.545-553
    • /
    • 2017
  • A pounding tuned mass damper (PTMD) can be considered as a passive device, which combines the merits of a traditional tuned mass damper (TMD) and a collision damper. A recent analytical study by the authors demonstrated that the PTMD base on the energy dissipation during impact is able to achieve better control effectiveness over the traditional TMD. In this paper, a PTMD prototype is manufactured and applied for seismic response reduction to examine its efficacy. A series of shaking table tests is conducted in a three-story building frame model under single-dimensional and two-dimensional broadband earthquake excitations with different excitation intensities. The ability of the PTMD to reduce the structural responses is experimentally investigated. The results show that the traditional TMD is sensitive to input excitations, while the PTMD mostly has improved control performance over the TMD to remarkably reduce both the peak and root-mean-square (RMS) structural responses under single-dimensional earthquake excitation. Unlike the TMD, the PTMD is found to have the merit of maintaining a stable performance when subjected to different earthquake loadings. In addition, it is also indicated that the performance of the PTMD can be enhanced by adjusting the initial gap value, and the control effectiveness improves with the increasing excitation intensity. Under two-dimensional earthquake inputs, the PTMD controls remain outperform the TMD controls; however, the oscillation of the added mass is observed during the test, which may induce torsional vibration modes of the structure, and hence, result in poor control performance especially after a strong earthquake period.

중약진지역 구조물과 스마트 최상층 면진시스템의 통합최적설계에 대한 연구 (Study of Integrated Optimal Design of Smart Top-Story Isolation and Building Structures in Regions of Low-to-Moderate Seismicity)

  • 김현수;강주원
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제17권5호
    • /
    • pp.13-20
    • /
    • 2013
  • 구조물의 지진응답을 저감시키기 위하여 추가적인 감쇠기나 진동제어장치가 일반적으로 사용된다. 이때, 추가적인 감쇠장치의 제어성능은 대상구조물 특성의 변화 없이 검토된다. 본 연구에서는 구조물과 스마트 제어장치의 다목적 통합최적화를 수행하였고 스마트 최상층 면진시스템이 설치된 구조물의 구조물량 저감의 가능성을 분석하였다. 이를 위하여 20층 예제구조물이 사용되었으며 MR 감쇠기와 저감쇠 탄성베어링을 사용하여 스마트 면진시스템을 구성하였다. 중약진지역의 설계스펙트럼을 바탕으로 생성된 인공지진하중을 사용하여 구조해석을 수행하였다. 수치해석결과, 스마트 최상층 면진시스템이 중약진지역에 있는 구조물의 응답과 면진층 변위를 동시에 효과적으로 줄일 수 있는 것을 확인하였다. 본 연구에서 제안된 통합최적설계기법으로 구조물량 및 감쇠기 용량을 적절하게 줄이면서도 우수한 제어성능을 발휘하는 다양한 설계 대안을 제공할 수 있었다.

Passive, semi-active, and active tuned-liquid-column dampers

  • Chen, Yung-Hsiang;Ding, Ying-Jan
    • Structural Engineering and Mechanics
    • /
    • 제30권1호
    • /
    • pp.1-20
    • /
    • 2008
  • The dynamic characteristics of the passive, semi-active, and active tuned-liquidcolumn dampers (or TLCDs) are studied in this paper. The design of the latter two are based on the first one. A water-head difference (or simply named as water head in this paper) of a passive TLCD is pre-set to form the so-called semi-active one in this paper. The pre-set of water head is released at a proper time instant during an earthquake excitation in order to enhance the vibration reduction of a structure. Two propellers are installed along a shaft inside and at the center of a passive TLCD to form an active one. These two propellers are driven by a servo-motor controlled by a computer to provide the control force. The seismic responses of a five-story shear building with a passive, semiactive, and active TLCDs are computed for demonstration and discussion. The responses of this building with a tuned mass damper (or TMD) are also included for comparison. The small-scale shaking-table experiments of a pendulum-like system with a passive or active TLCD to harmonic and seismic excitations are conducted for verification.