• 제목/요약/키워드: seismic areas

검색결과 275건 처리시간 0.023초

Effect of containment reinforcement on the seismic response of box type laterite masonry structures - an analytical evaluation

  • Unnikrishnan, Sujatha;Narasimhan, Mattur C.;Venkataramana, Katta
    • Earthquakes and Structures
    • /
    • 제5권1호
    • /
    • pp.67-81
    • /
    • 2013
  • Laterite blocks are used for construction of masonry walls since ages in the South-western coastal areas of India. The south-west coastal areas of India lie in zone III of seismic zonation map of Indian code IS 1893-2002. In spite of the fact that laterite is the most favored masonry material in these regions of India, the structural performance of laterite masonry has not been systematically investigated. Again there are no previous studies addressing, in detail, the seismic performance of laterite masonry buildings. Now that these areas are becoming more and more important from point of view of trade and commerce, there is a need for a detailed research on the seismic response of laterite masonry structures located in these areas. The present paper reports the results of such a study of the seismic response of box-type laterite masonry structures. Time history analysis of these structures under El-Centro acceleration has been performed using commercial finite element software ANSYS. Effect of 'containment reinforcement' on the seismic response of box type laterite masonry structures has been evaluated.

Parametric seismic evaluation of highway overpass bridges in moderate seismic areas

  • Simon, Jozsef;Vigh, Gergely L.
    • Earthquakes and Structures
    • /
    • 제12권3호
    • /
    • pp.375-388
    • /
    • 2017
  • Prior to modern seismic provisions, several bridges were not designed for seismic actions in moderate seismic areas. Precast multi-girder and slab bridges are typical highway overpass structures; they have a significant contribution to national bridge stocks. Since the seismic behavior is questionable, a preliminary parametric study is conducted to determine critical configurations and components. The results indicate that the behavior of the abutments, backfill soil, superstructure and foundation is normally satisfactory; however, the superstructure-abutment joints are critical for both single- and multi-span bridges, while the piers are also critical for longer multi-span configurations. The parametric results provide a solid basis both for detailed seismic assessment and development of design concepts of newly built structures in moderate seismic zones.

Seismic fragility performance of skewed and curved bridges in low-to-moderate seismic region

  • Chen, Luke;Chen, Suren
    • Earthquakes and Structures
    • /
    • 제10권4호
    • /
    • pp.789-810
    • /
    • 2016
  • Reinforced concrete (RC) bridges with both skew and curvature are pretty common in areas with complex terrains. Existing studies have shown skewed and/or curved bridges exhibit more complicated seismic performance than straight bridges, and yet related seismic risk studies are still rare. These bridges deserve more studies in low-to-moderate seismic regions than those in seismic-prone areas. This is because for bridges with irregular and complex geometric designs, comprehensive seismic analysis is not always required and little knowledge about actual seismic risks for these bridges in low-to-moderate regions is available. To provide more insightful understanding of the seismic risks and the impact from the geometric configurations, analytical fragility studies are carried out on four typical bridge designs with different geometric configurations (i.e., straight, curved, skewed, skewed and curved) in the mountain west region of the United States. The results show the curved and skewed geometries can considerably affect the bridge seismic fragility in a complex manner, underscoring the importance of conducting detailed seismic risk assessment of skewed and curved bridges in low-to-moderate seismic regions.

Study of exterior beam-column joint with different joint core and anchorage details under reversal loading

  • Rajagopal, S.;Prabavathy, S.
    • Structural Engineering and Mechanics
    • /
    • 제46권6호
    • /
    • pp.809-825
    • /
    • 2013
  • In the present study, in reinforced concrete structures, beam-column connections are one of the most critical regions in areas with seismic susceptibility. Proper anchorage of reinforcement is vital to enhance the performance of beam-column joints. Congestion of reinforcement and construction difficulties are reported frequently while using conventional reinforcement detailing in beam-column joints of reinforced concrete structures. An effort has been made to study and evaluate the performance of beam-column joints with joint detailing as per ACI-352 (mechanical anchorage), ACI-318 (conventional hooks bent) and IS-456(full anchorage conventional hooks bent) along with confinement as per IS-13920 and without confinement. Apart from finding solutions for these problems, significant improvements in seismic performance, ductility and strength were observed while using mechanical anchorage in combination with X-cross bars for less seismic prone areas and X-cross bar plus hair clip joint reinforcement for higher seismic prone areas. To evaluate the performances of these types of anchorages and joint details, the specimens were assembled into four groups, each group having three specimens have been tested under reversal loading and the results are presented in this paper.

Seismic deformation behaviors of the soft clay after freezing-thawing

  • Zhen-Dong Cui;Meng-Hui Huang;Chen-Yu Hou;Li Yuan
    • Geomechanics and Engineering
    • /
    • 제34권3호
    • /
    • pp.303-316
    • /
    • 2023
  • With the development and utilization of urban underground space, the artificial ground freezing technology has been widely used in the construction of underground engineering in soft soil areas. The mechanical properties of soft clay changed greatly after freezing and thawing, which affected the seismic performance of underground structures. In this paper, a series of triaxial tests were carried out to study the dynamic response of the freezing-thawing clay under the seismic load considering different dynamic stress amplitudes and different confining pressures. The reduction factor of dynamic shear stress was determined to correct the amplitude of the seismic load. The deformation development mode, the stress-strain relationship and the energy dissipation behavior of the soft clay under the seismic load were analyzed. An empirical model for predicting accumulative plastic strain was proposed and validated considering the loading times, the confining pressures and the dynamic stress amplitudes. The relevant research results can provide a theoretical reference to the seismic design of underground structures in soft clay areas.

Shake table testing of confined adobe masonry structures

  • Khan, Faisal Zaman;Ahmad, Muhammad Ejaz;Ahmad, Naveed
    • Earthquakes and Structures
    • /
    • 제20권2호
    • /
    • pp.149-160
    • /
    • 2021
  • Buildings made using the locally available clay materials are amongst the least expensive forms of construction in many developing countries, and therefore, widely popular in remote areas. It is despite the fact that these low-strength masonry structures are vulnerable to seismic forces. Since transporting imported materials like cement and steel in areas inaccessible by motorable roads is challenging and financially unviable. This paper presents, and experimentally investigates, adobe masonry structures that utilize the abundantly available local clay materials with moderate use of imported materials like cement, aggregates, and steel. Shake-table tests were performed on two 1:3 reduce-scaled adobe masonry models for experimental seismic testing and verification. The model AM1 was confined with vertical lightly reinforced concrete columns provided at all corners and reinforced concrete horizontal bands (i.e., tie beams) provided at sill, lintel, and eave levels. The model AM2 was confined only with the horizontal bands provided at sill, lintel, and eave levels. The models were subjected to sinusoidal base motions for studying the damage evolution and response of the model under dynamic lateral loading. The lateral forcedeformation capacity curves for both models were developed and bi-linearized to compute the seismic response parameters: stiffness, strength, ductility, and response modification factor R. Seismic performance levels, story-drift, base shear coefficient, and the expected structural damages, were defined for both the models. Seismic performance assessment of the selected models was carried out using the lateral seismic force procedure to evaluate their safety in different seismic zones. The use of vertical columns in AM1 has shown a considerable increase in the lateral strength of the model in comparison to AM2. Although an R factor equal to 2.0 is recommended for both the models, AM1 has exhibited better seismic performance in all seismic zones due to its relatively high lateral strength in comparison to AM2.

Investigation of elasto-plastic seismic response analysis method for complex steel bridges

  • Tang, Zhanzhan;Xie, Xu;Wang, Yan;Wang, Junzhe
    • Earthquakes and Structures
    • /
    • 제7권3호
    • /
    • pp.333-347
    • /
    • 2014
  • Multi-scale model can take both computational efficiency and accuracy into consideration when it is used to conduct elasto-plastic seismic response analysis for complex steel bridges. This paper proposed a method based on pushover analysis of member sharing the same section pattern to verify the accuracy of multi-scale model. A deck-through type steel arch bridge with a span length of 200m was employed for seismic response analysis using multi-scale model and fiber model respectively, the validity and necessity of elasto-plastic seismic analysis for steel bridge by multi-scale model was then verified. The results show that the convergence of load-displacement curves obtained from pushover analysis for members having the same section pattern can be used as a proof of the accuracy of multi-scale model. It is noted that the computational precision of multi-scale model can be guaranteed when length of shell element segment is 1.40 times longer than the width of section where was in compression status. Fiber model can only be used for the predictions of the global deformations and the approximate positions of plastic areas on steel structures. However, it cannot give exact prediction on the distribution of plastic areas and the degree of the plasticity.

High-resolution seismic reflection surveying at paved areas using an S-wave type land streamer

  • Inazaki Tomio
    • 지구물리와물리탐사
    • /
    • 제7권1호
    • /
    • pp.1-6
    • /
    • 2004
  • High-resolution S-wave reflection surveying has been successfully conducted on paved areas using a Land Streamer originally designed by the author. The main feature of the Land Streamer tool is the non-stretch woven belt on which geophone units are mounted to form a multichannel geophone array similar to a marine streamer. Because it is easily towed by a vehicle or by hand, the tool leads to high performance in field measurements and resultant cost-effectiveness of high-resolution reflection surveys. Although each geophone unit is coupled to the pavement through a metallic baseplate instead of being firmly planted in the ground, the Land Streamer tool provides comparatively clean data, unaffected by traffic noise even on the pavement. Thus, the tool is capable of expanding the opportunity for S-wave reflection surveys in urban areas where many surfaces are paved and traffic noise is severe. A series of high-resolution S-wave reflection surveys on paved areas delineated detailed structures of surface layers shallower than 60 m, and proved the wide applicability of the tool to engineering, environmental applications, and earthquake disaster prevention projects.

Passive seismic protection systems with mechanical metamaterials: A current review

  • Guevara-Corzo, Jeffrey J.;Begambre-Carrillo, Oscar J.;Garcia-Sanchez, Jesus A.;Sanchez-Acevedo, Heller G.
    • Structural Engineering and Mechanics
    • /
    • 제82권4호
    • /
    • pp.417-434
    • /
    • 2022
  • In this work, a review of mechanical metamaterials and seismic protection systems that use them is carried out, focusing on passive protection systems. During the last years, a wide variety of classical systems of seismic protection have demonstrated to be an effective and practical way of reducing the seismic vulnerability of buildings, maintaining their health and structural integrity. However, with the emergence of metamaterials, which allow obtaining uncommon mechanical properties, new procedures and devices with high performance have been developed, reducing the seismic risk through novel approaches such as: seismic shields and the redirection of seismic waves; the use of stop band gaps and the construction of buried mass resonators; the design of pentamodal base isolators. These ideas are impacting traditional areas of structural engineering such as the design and building of highly efficient base isolation systems. In this work, recent advances in new seismic protection technologies and researches that integrate mechanical metamaterials are presented. A complete bibliometric analysis was carried out to identify and classify relevant authors and works related with passive seismic protection system based on mechanical metamaterial (pSPSmMMs). Finally, possible future scenarios for study and development of seismic isolators based on mechanical metamaterials are shown, identifying the relevant topics that have not yet been explored, as well as those with the greatest potential for future application.

포항분지 전이대에서 천부가스 탐사 (Shallow Gas Exploration in the Pohang Basin Transition Zone)

  • 이동훈;김병엽;김지수;장성형
    • 지구물리와물리탐사
    • /
    • 제25권1호
    • /
    • pp.1-13
    • /
    • 2022
  • 포항분지 천부가스 탐사를 위해 육상과 해상이 연결되는 전이대에서 탄성파 탐사 방법을 제안하고 탐사를 수행하였다. 해저면 환경, 육상 탐사 환경을 고려하여 탐사를 설계하였다. 육상노드 수진기는 육상에만 설치하였고 육상에서는 바이브로사이스 음원을, 해양에서는 에어건 음원을 이용하여 자료를 취득하였다. 전이대에서 취득한 탄성파 탐사자료의 경우 육상탐사와 해상탐사 간의 정확한 연계를 위해 신중한 자료 취득과 처리 과정이 필요하다. 음원 종류에 따른 진폭과 위상변화를 고려하고, 음원위치에 따른 정적보정을 적용한 자료처리를 통해 지층단면도에서 반사파 연속성이 유지되게 하였다. 자료처리 결과 육상과 해상의 지층구조가 연결된 탄성파 지층단면도를 확보하고 포항분지 천부 가스층 탐사에 활용하고자 하였다. 전이대에서 탄성파 탐사는 천부가스뿐만 아니라 연안지역 단층대 조사에도 활용할 수 있을 것으로 기대된다.