DOI QR코드

DOI QR Code

Seismic deformation behaviors of the soft clay after freezing-thawing

  • Zhen-Dong Cui (State Key Laboratory of Intelligent Construction and Healthy Operation & Maintenance of Deep Underground Engineering, School of Mechanics and Civil Engineering, China University of Mining and Technology) ;
  • Meng-Hui Huang (State Key Laboratory of Intelligent Construction and Healthy Operation & Maintenance of Deep Underground Engineering, School of Mechanics and Civil Engineering, China University of Mining and Technology) ;
  • Chen-Yu Hou (State Key Laboratory of Intelligent Construction and Healthy Operation & Maintenance of Deep Underground Engineering, School of Mechanics and Civil Engineering, China University of Mining and Technology) ;
  • Li Yuan (State Key Laboratory of Intelligent Construction and Healthy Operation & Maintenance of Deep Underground Engineering, School of Mechanics and Civil Engineering, China University of Mining and Technology)
  • Received : 2023.02.24
  • Accepted : 2023.06.29
  • Published : 2023.08.10

Abstract

With the development and utilization of urban underground space, the artificial ground freezing technology has been widely used in the construction of underground engineering in soft soil areas. The mechanical properties of soft clay changed greatly after freezing and thawing, which affected the seismic performance of underground structures. In this paper, a series of triaxial tests were carried out to study the dynamic response of the freezing-thawing clay under the seismic load considering different dynamic stress amplitudes and different confining pressures. The reduction factor of dynamic shear stress was determined to correct the amplitude of the seismic load. The deformation development mode, the stress-strain relationship and the energy dissipation behavior of the soft clay under the seismic load were analyzed. An empirical model for predicting accumulative plastic strain was proposed and validated considering the loading times, the confining pressures and the dynamic stress amplitudes. The relevant research results can provide a theoretical reference to the seismic design of underground structures in soft clay areas.

Keywords

Acknowledgement

This work presented in this paper was funded by the Graduate Innovation Program of China University of Mining and Technology (2022WLJCRCZL038) and the Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX22 2574).

References

  1. Afshani, A. and Akagi, H. (2015), "Artificial ground freezing application in shield tunneling", Japanese Geotech.Society Special Publication, 3(2), 71-75. https://doi.org/10.3208/jgssp.v03.j01.
  2. Alkire, B.D. and Morrison, J.M. (1983), "Change in soil structure due to freeze-thaw and repeated loading", Transport. Res. Record, 918, 15-21.
  3. Chamberlain, E.J. and Gow, A.J. (1979), "Effect of freezing and thawing on the permeability and structure of soils", Eng. Geol., 13, 73-92. https://doi.org/10.1016/0013-7952(79)90022-X.
  4. Cheng, S., Wang, Q., Fu, H., Wang, J., Han, Y., Shen, J. and Lin, S. (2021), "Effect of freeze-thaw cycles on the mechanical properties and constitutive model of saline soil", Geomech. Eng., 27(4), 309-322. https://doi.org/10.12989/gae.2021.27.4.309.
  5. Cui, Z.D., He, P.P. and Yang, W.H. (2014), "Mechanical properties of a silty clay subjected to freezing-thawing", Cold Reg. Sci. Technol., 98, 26-34. https://doi.org/10.1016/j.coldregions.2013.10.009.
  6. Cui, Z.D. and Zhang, Z.L. (2015), "Comparison of dynamic characteristics of the silty clay before and after freezing and thawing under the subway vibration loading", Cold Reg. Sci. Technol., 119, 29-36. https://doi.org/10.1016/j.coldregions.2015.07.004.
  7. Cui, Z.D., Zhang, Z.L., Yuan, L., Zhan, Z.X. and Zhang, W.K. (2019), "Design of underground structures", Springer Press, Singapore. https://doi.org/10.1007/978-981-13-7732-7.
  8. Cui, Z.D., Zhang, L.J. and Zhan, Z.X. (2023), "Dynamic shear modulus and damping ratio of saturated soft clay under the seismic loading", Geomech. Eng., 32(4), 411-426. https://doi.org/10.12989/gae.2023.32.4.411.
  9. Ghazavi, M. and Roustaei, M. (2013), "Freeze-thaw performance of clayey soil reinforced with geotextile layer", Cold Reg. Sci. Technol., 89, 22-29. https://doi.org/10.1016/j.coldregions.2013.01.002.
  10. Guo, L., Liu, L.G., Wang, J., Jin, H.X. and Fang, Y. (2020), "Long term cyclic behavior of saturated soft clay under different drainage conditions", Soil Dyn. Earthq. Eng., 139. https://doi.org/10.1016/j.soildyn.2020.106362.
  11. Iida, H., Hiroto, T., Yoshida, N. and Iwafuji, M. (1996), "Damage to Daikai subway station", Soils Found., 36, 283-300. https://doi.org/10.3208/sandf.36.Special_283.
  12. Jin, H., Go, G.-H., Ryu, B.H. and Lee, J. (2021), "Experimental and numerical investigation of closure time during artificial ground freezing with vertical flow", Geomech. Eng., 27(5), 433-445. https://doi.org/10.12989/gae.2021.27.5.433.
  13. Kang, M. and Lee, J.S. (2015), "Evaluation of the freezing-thawing effect in sand-silt mixtures using elastic waves and electrical resistivity", Cold Reg. Sci. Technol., 113, 1-11. https://doi.org/10.1016/j.coldregions.2015.02.004.
  14. Lei, H.Y., Song, Y.J., Qi, Z.Y., Liu, J.J. and Liu, X. (2019), "Accumulative plastic strain behaviors and microscopic structural characters of artificially freeze-thaw soft clay under dynamic cyclic loading", Cold Reg. Sci. Technol., 168. https://doi.org/10.1016/j.cohiregions.2019.102895.
  15. Li, Q.L., Ling, X.Z., Wang, L.N., Zhang, F., Wang, J.H. and Xu, P.J. (2013), "Accumulative strain of clays in cold region under long-term low-level repeated cyclic loading: Experimental evidence and accumulation model", Cold Reg. Sci. Technol., 94, 45-52. https://doi.org/10.1016/j.coldregions.2013.06.008.
  16. Lin, B., Zhang, F., Feng, D.C., Tang, K.W. and Feng, X. (2017), "Accumulative plastic strain of thawed saturated clay under long-term cyclic loading", Eng. Geol., 231, 230-237. https://doi.org/10.1016/j.enggeo.2017.09.028.
  17. Ling, X.Z., Li, Q.L., Wang, L.A., Zhang, F., An, L.S. and Xu, P.J. (2013), "Stiffness and damping radio evolution of frozen clays under long-term low-level repeated cyclic loading: Experimental evidence and evolution model", Cold Reg. Sci. Technol., 86, 45-54. https://doi.org/10.1016/j.coldregions.2012.11.002.
  18. Ling, X.Z., Zhu, Z.Y., Zhang, F., Chen, S.J., Wang, L.N., Gao, X. and Lu, Q.R. (2009), "Dynamic elastic modulus for frozen soil from the embankment on Beiluhe Basin along the Qinghai-Tibet Railway", Cold Reg. Sci. Technol., 57(1), 7-12. https://doi.org/10.1016/j.coldregions.2009.01.004.
  19. Mansour, M.F. (2018), "Constitutive behavior of Port-Said Clay under seismic and small strain static conditions", Ain Shams Eng. J., 9(4), 2983-2991. https://doi.org/10.1016/j.asej.2018.06.005.
  20. Murcia-Delso, J., Alcocer, S.M., Arnau, O., Martinez, Y. and Muria-Vila, D. (2020), "Seismic rehabilitation of concrete buildings after the 1985 and 2017 earthquakes in Mexico City", Earthq. Spectra, 36(2), 175-198. https://doi.org/10.1177/8755293020957372.
  21. Niemunis, A., Wichtmann, T. and Triantafyllidis, T. (2005), "A high-cycle accumulation model for sand", Comput. Geotech., 32(4), 245-263. https://doi.org/10.1016/j.compgeo.2005.03.002.
  22. Puppala, A.J., Saride, S. and Chomtid, S. (2009), "Experimental and modeling studies of permanent strains of subgrade soils", J. Geotech. Geoenviron. Eng., 135, 1379-1389. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000163.
  23. Simonsen, E., Vincent C. Janoo, M.A. and Isacsson, U. (2002), "Resilient properties of unbound road materials during seasonal frost conditions", J. Cold Reg. Eng., 16, 28-50. https://doi.org/10.1061/(ASCE)0887-381X(2002)16:1(28).
  24. Singh, P., Bhartiya, P., Chakraborty, T. and Basu, D. (2023), "Numerical investigation and estimation of active earth thrust on gravity retaining walls under seismic excitation", Soil Dyn. Earthq. Eng., 167, 107798. https://doi.org/10.1016/j.soildyn.2023.107798.
  25. Tang, Y.Q. and Yan, J.J. (2015), "Effect of freeze-thaw on hydraulic conductivity and microstructure of soft soil in Shanghai area", Environ. Earth Sci., 73(11), 7679-7690. https://doi.org/10.1007/s12665-014-3934-x.
  26. Wang, D., Liu, E.L., Zhang, D., Yue, P., Wang, P., Kang, J. and Yu, Q.H. (2021), "An elasto-plastic constitutive model for frozen soil subjected to cyclic loading", Cold Reg. Sci. Technol., 189, 103341. https://doi.org/10.1016/j.coldregions.2021.103341.
  27. Wang, D.Y., Ma, W., Niu, Y.H., Chang, X.X. and Wen, Z. (2007), "Effects of cyclic freezing and thawing on mechanical properties of Qinghai-Tibet clay", Cold Reg. Sci. Technol., 48(1), 34-43. https://doi.org/10.1016/j.coldregions.2006.09.008.
  28. Wang, S., Wang, Q., Xu, J., Ding, J., Qi, J., Yang, Y. and Liu, F. (2019), "Thaw consolidation behavior of frozen soft clay with calcium chloride", Geomech. Eng., 18(2), 189-203. https://doi.org/10.12989/gae.2019.18.2.189.
  29. Wang, Z.Z., Gao, B., Jiang, Y.J. and Yuan, S. (2009), "Investigation and assessment on mountain tunnels and geotechnical damage after the Wenchuan earthquake", Science in China Series E-Technological Sciences, 52(2), 546-558. https://doi.org/10.1007/s11431-009-0054-z.
  30. Wichtmann, T., Rondon, H.A., Niemunis, A., Triantafyllidis, T. and Lizcano, A. (2010), "Prediction of permanent deformations in pavements using a high-cycle accumulation model", J. Geotech. Geoenviron. Eng., 136, 728-740. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000275.
  31. Yang, Y.G., Lai, Y.M. and Li, J.B. (2010), "Laboratory investigation on the strength characteristic of frozen sand considering effect of confining pressure", Cold Reg. Sci. Technol., 60(3), 245-250. https://doi.org/10.1016/j.coldregions.2009.11.003.
  32. Yao, X.L., Qi, J.L. and Ma, W. (2009), "Influence of freeze-thaw on the stored free energy in soils", Cold Regions Sci. Technology, 56(2-3), 115-119. https://doi.org/10.1016/j.coldregions.2008.11.001.
  33. Yilmaz, F. and Fidan, D. (2018), "Influence of freeze-thaw on strength of clayey soil stabilized with lime and perlite", Geomech. Eng., 14(3), 301-306. https://doi.org/10.12989/gae.2018.14.3.301.
  34. Zhang, Z.L. and Cui, Z.D. (2018), "Effect of freezing-thawing on dynamic characteristics of the silty clay under K0-consolidated condition", Cold Reg. Sci. Technol., 146, 32-42. https://doi.org/10.1016/j.coldregions.2017.11.009.
  35. Zheng, L.F., Gao, Y.T., Zhou, Y., Liu, T. and Tian, S.G. (2021), "A practical method for predicting ground surface deformation induced by the artificial ground freezing method", Comput. Geotech., 130. https://doi.org/10.1016/j.compgeo.2020.103925.
  36. Zhou, J. and Tang, Y.Q. (2015a), "Artificial ground freezing of fully saturated mucky clay: Thawing problem by centrifuge modeling", Cold Reg. Sci. Technol., 117, 1-11.https://doi.org/10.1016/j.coldregions.2015.04.005.
  37. Zhou, J. and Tang, Y.Q. (2015b), "Centrifuge experimental study of thaw settlement characteristics of mucky clay after artificial ground freezing", Eng. Geol., 190, 98-108. https://doi.org/10.1016/j.enggeo.2015.03.002.
  38. Zhou, Z.W., Ma, W., Zhang, S.J., Mu, Y.H. and Li, G.Y. (2018), "Effect of freeze-thaw cycles in mechanical behaviors of frozen loess", Cold Reg. Sci. Technol., 146, 9-18. https://doi.org/10.1016/j.coldregions.2017.11.011.