• Title/Summary/Keyword: seed potential

Search Result 558, Processing Time 0.027 seconds

Effect of hemp seed oil on lipid metabolism in rats fed a high-cholesterol diet (햄프씨드 오일이 고콜레스테롤식이를 급여한 흰쥐의 지질대사에 미치는 영향)

  • Jin A Lee ;Seong-Soo Roh ;Woo Rak Lee;Mi-Rae Shin
    • Journal of Nutrition and Health
    • /
    • v.56 no.4
    • /
    • pp.361-376
    • /
    • 2023
  • Purpose: This study evaluates the potential protective effects of hemp (Cannabis sativa L.) seed oil supplementation in rats fed a high-cholesterol diet. Methods: Rats were fed a 1.25% cholesterol diet for 8 weeks, followed by oral administration of either of the two doses of hemp seed oil (HO) (0.5 mL/kg (HOL group) or 1 mL/kg (HOH group) body weight/day) or simvastatin at 10 mg/kg body weight/day. Oxidative stress, lipids, liver enzymes, and renal markers were measured in the serum. Western blot analysis was applied for evaluating the expressions of inflammatory makers. Results: Except for HDL-cholesterol, the altered levels of lipoproteins, aminotransferases, urea, and creatine kinases in hypercholesterolemic rats were significantly corrected by HO administration. Especially, compared to the HOH group, HOL treatment further reduced AST, ALT, creatinine, TC, and LDL-cholesterol levels. Moreover, both the atherogenic index and cardiac risk factor (CRF) in the HOL group were more restrained compared to the HOH group. Increased levels of p-AMPK coincided with the inhibition of SREBP-2 activation which subsequently suppressed the expression of HMGCR. Nuclear factor (NF)-κB activation coincided with the PI3K/Akt pathway activation and the increased phosphorylation of p38; these levels were significantly suppressed by HO treatment. In addition, HO treatment markedly reversed the changes in chemokines such as ICAM-1, VCAM-1, and MCP-1. Histological alterations induced by cholesterol overload in cardiac and hepatic tissues were ameliorated by HO supplementation. Conclusion: Taken together, our results indicate a low concentration of HO demonstrates improved dysfunctions caused by a high-cholesterol diet via inhibition of the PI3K/Akt/NF-κB signaling pathway.

Quality Improvement of Crude Glycerol from Biodiesel Production Using Activated Carbon Derived from Krabok (Irvingia malayana) Seed Shells

  • Wuttichai Roschat;Sarunya Donrussamee;Phatcharanan Smanmit;Samlit Jikjak;Tappagorn Leelatam;Sunti Phewphong;Krittiyanee Namwongsa;Preecha Moonsin;Vinich Promarak
    • Korean Journal of Materials Research
    • /
    • v.34 no.1
    • /
    • pp.1-11
    • /
    • 2024
  • This research investigated the preparation of activated carbon derived from Krabok (Irvingia malayana) seed shells to improve the quality of crude glycerol obtained during biodiesel production. The activated carbon was prepared using a dry chemical activation method with NaOH, utilizing an innovative biomass incinerator. The results revealed that the resulting KC/AC-two-step exhibited favorable physicochemical adsorption properties, with a high surface area of 758.72 m2/g and an iodine number of 611.10 mg/g. These values meet the criteria of the industrial product standard for activated carbon No. TIS 900-2004, as specified by the Ministry of Industry in Thailand. Additionally, the adsorption efficiency for methylene blue reached an impressive 99.35 %. This developed activated carbon was then used to improve the quality of crude glycerol obtained from biodiesel production. The experimental results showed that the KC/AC-two-step increased the purity of crude glycerol to 73.61 %. In comparison, commercially available activated carbon (C/AC) resulted in a higher crude glycerol purity of 81.19 %, as analyzed by the GC technique. Additionally, the metal content (Zn, Cu, Fe, Pb, Cd, and Na) in purified glycerol using KC/AC-two-step was below the standards for heavy metals permitted in food and cosmeceuticals by the Food and Drug Administration of Thailand and the European Committee for Food Contact Materials and Articles. As a result, it can be inferred that Krabok seed shells have favorable properties for producing activated carbon suitable as an adsorbent to enhance crude glycerol purity. Furthermore, the improved crude glycerol from this research has potential for various industrial applications.

A Study on the Liquefaction Potential Evaluation of Reclaimed Land Using Laboratory Test and Field Tests (현장 및 실내시험을 이용한 준설매립지반의 액상화 평가에 관한 연구)

  • Kim, Jong-Kook;Chae, Young-Su
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1528-1537
    • /
    • 2005
  • The purpose of this study is investigated the method for estimation of the liquefaction on the reclaimed land, located in Incheon and assessed the ability of liquefaction under the condition of criteria, which is the magnitude '6.5' of seismic on the basis of the domestic seismic characteristics. Performed not only field test but the experiment as well to study how the fine content would affect into the dreging and reclaimed land and also estimated the safety factor through the empirical method and anticipated detail method based on the results. Within the reclaimed land, there are many sized soils which are almost extended from well-graded silty sand(SM) to poor-graded fine grained sand, and which have the condition, so called, the liquefaction which is easily to bring into under the circumstances within the ground. However, partly, now that the soil is mixed with silt and silty clay which include the content of fine grained dust quite a bit, the difficulties and inconveniences has been expected while trying to find the ratio of cyclic resistance, but finally Seed and Idriss method showed the most way when we estimate the safety factor on the liquefaction.

  • PDF

Human Amnion-Derived Mesenchymal Stem Cells Protect Human Bone Marrow Mesenchymal Stem Cells against Oxidative Stress-Mediated Dysfunction via ERK1/2 MAPK Signaling

  • Wang, Yuli;Ma, Junchi;Du, Yifei;Miao, Jing;Chen, Ning
    • Molecules and Cells
    • /
    • v.39 no.3
    • /
    • pp.186-194
    • /
    • 2016
  • Epidemiological evidence suggests that bone is especially sensitive to oxidative stress, causing bone loss in the elderly. Previous studies indicated that human amnion-derived mesenchymal stem cells (HAMSCs), obtained from human amniotic membranes, exerted osteoprotective effects in vivo. However, the potential of HAMSCs as seed cells against oxidative stress-mediated dysfunction is unknown. In this study, we systemically investigated their antioxidative and osteogenic effects in vitro. Here, we demonstrated that HAMSCs significantly promoted the proliferation and osteoblastic differentiation of $H_2O_2$-induced human bone marrow mesenchymal stem cells (HBMSCs), and down-regulated the reactive oxygen species (ROS) level. Further, our results suggest that activation of the ERK1/2 MAPK signal transduction pathway is essential for both HAMSCs-mediated osteogenic and protective effects against oxidative stress-induced dysfunction in HBMSCs. U0126, a highly selective inhibitor of extracellular ERK1/2 MAPK signaling, significantly suppressed the antioxidative and osteogenic effects in HAMSCs. In conclusion, by modulating HBMSCs, HAMSCs show a strong potential in treating oxidative stress- mediated bone deficiency.

Soybean Growth and Yield as Affected by Spacing of Drainage Furrows in Paddy Field

  • Cho, Jin-Woong;Lee, Jung-June;Oh, Young-Jin;So, Jung-D.;Won, Jun-Yeon;Kim, Chang-Ho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.1
    • /
    • pp.26-31
    • /
    • 2006
  • This study was conducted to determine the optimum number of inter-rows according to distance of drainage furrow (DF) for running-off excessive-water stress (EWS) in paddy field. The most soil water potential was shown in high ridge (distance of DF by 70 cm) cultivation and the soil water potential showed increasing tendency in over four inter-rows cultivation by DF. The growth of soybean reduced by extended inter-row and its reducing level was high, especially, over four inter-rows (DF distance by 2.8 m) because of EWS. The photosynthetic rate decreased in the more extensive field by distance of DF at V5 and R2 stages, especially, in over four interrows cultivation. Also, root activity decreased at wider DF. The yield was reduced with wider distance of DF more extensively, the highest yield of 270 g per $m^2$ at the every row, but yield showed decreasing tendency at over the $4^{th}$ row (2.8 m) cultivation. Soybean cultivation in paddy field could be founded with DF of every other or $4^{th}$ row.

Kelps in Korea: from population structure to aquaculture to potential carbon sequestration

  • Hwang, Eun Kyoung;Boo, Ga Hun;Graf, Louis;Yarish, Charles;Yoon, Hwan Su;Kim, Jang Kyun
    • ALGAE
    • /
    • v.37 no.2
    • /
    • pp.85-103
    • /
    • 2022
  • Korea is one of the most advanced countries in kelp aquaculture. The brown algae, Undaria pinnatifida and Saccharina japonica are major aquaculture species and have been principally utilized for human food and abalone feed in Korea. This review discusses the diversity, population structure and genomics of kelps. In addition, we have introduced new cultivar development efforts considering climate change, and potential carbon sequestration of kelp aquaculture in Korea. U. pinnatifida showed high diversity within the natural populations but reduced genetic diversity in cultivars. However, very few studies of S. japonica have been conducted in terms of population structure. Since studies on cultivar development began in early 2000s, five U. pinnatifida and one S. japonica varieties have been registered to the International Union for the Protection of New Varieties of Plants (UPOV). To meet the demands for seaweed biomass in various industries, more cultivars should be developed with specific traits to meet application demands. Additionally, cultivation technologies should be diversified, such as integrated multi-trophic aquaculture (IMTA) and offshore aquaculture, to achieve environmental and economic sustainability. These kelps are anticipated to be important sources of blue carbon in Korea.

UHPLC/TOFHRMS analysis and anti-inflammatory effect of leaf extracts from Zizyphus jujuba in LPS-stimulated RAW264.7 cells

  • Hyun Ji Eo;Sun-Young Lee;Gwang Hun Park
    • Journal of Plant Biotechnology
    • /
    • v.50
    • /
    • pp.27-33
    • /
    • 2023
  • Zizyphus jujube is a plant in the buckthorn family (Rhamnaceae) that has been the subject of research into antibacterial, antifungal and anti-inflammatory properties of its fruit and seed. However, few studies have investigated its leaves. In this study, the anti-inflammatory activity of ZJL (an extract of Z. jujube leaf) was evaluated to verify its potential as an anti-inflammatory agent and SARS-CoV-2 medicine, using nitric oxide (NO) assay, RT-PCR, SDSPAGE, Western blotting, and UHPLC/TOFHRMS analysis. We found that ZJL suppresed pro-inflammatory mediators such as NO, inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and tumor necrosis factor α (TNF-α) in lipopolysaccharide (LPS)-induced RAW264.7 cells. ZJL acted by inhibiting NF-KB and MAPK signaling pathway activity. We also confirmed that ZJL contains a phenol compound and flavonoids with anti-inflammatory activity such as trehalose, maleate, epigallocatechin, hyperoside, catechin, 3-O-coumaroylquinic acid, rhoifolin, gossypin, kaempferol 3-neohesperidoside, rutin, myricitrin, guaiaverin, quercitrin, quercetin, ursolic acid, and pheophorbide a. These findings suggest that ZJL may have great potential for the development of anti-inflammatory drugs and vaccines via inhibition of NF-κB and MAPK signaling in LPS-induced RAW264.7 cells.

Study on the growth of boron-doped diamond films in relation to pretreatment processes (전처리 공정에 따른 보론 첨가 다이아몬드 박막의 성장 거동)

  • Mi Young You;Song Hyeon Lee;Pung-Keun Song
    • Journal of the Korean institute of surface engineering
    • /
    • v.57 no.1
    • /
    • pp.1-7
    • /
    • 2024
  • The study investigated the impact of substrate pretreatment on depositing high-quality B-doped diamond (BDD) thin films using the HFCVD method. Films were deposited on Si and Nb substrates after sanding and seeding. Despite identical sanding conditions, BDD films formed faster on Nb due to even diamond seed distribution. Post-deposition, film average roughness (Ra) remained similar to substrate Ra, but higher substrate Ra led to decreased crystallinity. Nb substrate with 0.83 ㎛ Ra exhibited faster crystal growth due to dense, evenly distributed diamond seeds. BDD film on Nb with 0.83 ㎛ Ra showed a wide, stable potential window (2.8 eV) in CV results and a prominent 1332 cm-1 diamond peak in Raman spectroscopy, indicating high quality. The findings underscore the critical role of substrate pretreatment in achieving high-quality BDD film fabrication, crucial for applications demanding robust p-type semiconductors with superior electrical properties.

Effect of Silicate-Coated Rice Seed on Healthy Seedling Development and Bakanae Disease Reduction when Raising Rice in Seed Boxes (벼 상자육묘에서 규산코팅볍씨의 건묘육성과 벼키다리병 경감효과)

  • Kang, Yang-Soon;Kim, Wan Jung;Roh, Jae-Hwan
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.62 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • We investigated the effect of silicate coating of rice seeds on bakanae disease incidence and the quality of seedlings raised in seedling boxes and transplanted into pots. The silicate-coated rice seed (SCS) was prepared as follows. Naturally infested rice seeds not previously subjected to any fungicidal treatment were dressed with a mixture of 25% silicic acid at pH 11 and 300-mesh zeolite powder at a ratio of 50 g dry seed - 9 mL silicic acid - 25 g zeolite powder. The following nursery conditions were provided : Early sowing, dense seeding in a glass house with mulching overnight and no artificial heating, which were the ideal conditions for determining the effect on the seed. The nursery plants were evaluated for Gibberella. fujikuroi infection or to determine the recovery to normal growth of infected nursery plants in the Wagner pot. Seedlings emerged 2-3 days earlier for the SCS than they did for the non-SCS control, while damping-off and bakanae disease incidence were remarkably reduced. Specifically, bakanae disease incidence in the SCS was limited to only 7.8% for 80 days after sowing, as compared to 91.6% of the non-SCS control. For the 45-days-old SCS nursery seedlings, the fresh weight was increased by 11% and was two times heavier, with only mild damage compared to that observed for non-SCS. Even after transplanting, SCS treatment contributed to a lower incidence of further infections and possibly to recovery of the seedlings to normal growth as compared to that observed in symptomatic plants in the pot. The active pathogenic macro-conidia and micro-conidia were considerably lower in the soil, root, and seedling sheath base of the SCS. In particular, the underdeveloped macro-conidia with straight oblong shape without intact septum were isolated in the SCS ; this phenotype is likely to be at a comparative etiological disadvantage when compared to that of typical active macro-conidia, which are slightly sickle-shaped with 3-7 intact septa. A active intact conidia with high inoculum potential were rarely observed in the tissue of the seedlings treated only in the SCS. We propose that promising result was likely achieved via inhibition of the development of intact pathogenic conidia, in concert with the aerobic, acidic conditions induced by the physiochemical characteristics associated with the air porosity of zeolite, alkalinity of silicate and the seed husk as a carbon source. In addition, the resistance of the healthy plants to pathogenic conidia was also important factor.

Adaptation Strategy in Dry Matter and Seed Production of Rice and Weed Species (벼와 잡초(雜草)의 건물생산(乾物生産) 및 종자생산(鐘子生産) 특성(特性)에 따른 환경적응(環境適應) 전략(戰略))

  • Kim, Soon-Chul;Moody, Keith
    • Korean Journal of Weed Science
    • /
    • v.9 no.3
    • /
    • pp.183-200
    • /
    • 1989
  • An experiment was conducted at the greenhouse of the International Rice Research Institute in 1987 to find out the character of dry matter production, the potential seed production ability and the ecological and physiological strategies to adaptation. For these, two rice cultivars, IR64(lowland rice) and UPLRi-5(upland rice), and seven weed species were used ; Echinochloa glabrescens Munro ex Hook. f., E. cress-galls ssp. hispidula (Retz.) Honda, E. colons (L.) Link, Monochoria vaginalis (Burin. f.), Ludwigia octovalvis Jacq.) Raven, Fimbristylis miliacea Vahl and Cyperus difformis L. Adaptation strategies of weed species varied by species. However, they had efficient seed production strategy through different ways. In general, sedge weed species (F. miliacea and C. difformis) produced great amount of seeds at the expense of seed size through greater ratooning ability and low relative dry weight for flowering. For broadleaved weed species, greater number of descendants were obtained through high plasticity and low relative dry weight for flowering (M. vaginalis) or greater growth ability through effective photosynthetic efficiency (L. octovalvis). Grass weed species, on the other hand, produced their seeds through effective growth (net assimilation rate and relative growth rate), high ratooning ability (except E. crus-galls ssp. hispidula) or low relative dry weight to maximum dry weight for flowering (E. glabrescens). The harvest indices of the weed species were considerably lower than those of rice. Fimbristylis miliacea had the greatest ratooning ability followed by C. difformis, E. colons and E. glabrescens. The greatest seed productivity was recorded by C. difformis (279, 000) and L. octovalvis (268,000) while rice produced the least number of seeds (1300-6100). Log seed weight had a negative linear relationship with log seed number (y=6.30-1.48X, $R=-0.965^{**}$). For all species plant plasticity response was not directly correlated with mortality response.

  • PDF