References
- Baek, K.H., Oh, K.W., Lee, W.Y., Lee, S.S., Kim, M.K., Kwon, H.S., Rhee, E.J., Han, J.H., Song, K.H., Cha, B.Y., et al. (2010). Association of oxidative stress with postmenopausal osteoporosis and the effects of hydrogen peroxide on osteoclast formation in human bone marrow cell cultures. Calcif. Tissue Int. 87, 226-235. https://doi.org/10.1007/s00223-010-9393-9
- Bai, X.C., Lu, D., Bai, J., Zheng, H., Ke, Z.Y., Li, X.M., and Luo, S.Q. (2004). Oxidative stress inhibits osteoblastic differentiation of bone cells by ERK and NF-kappaB. Biochem. Biophys. Res. Commun. 314, 197-207. https://doi.org/10.1016/j.bbrc.2003.12.073
- Basu, S., Michaelsson, K., Olofsson, H., Johansson, S., and Melhus, H. (2001). Association between oxidative stress and bone mineral density. Biochem. Biophys. Res. Commun. 288, 275-279. https://doi.org/10.1006/bbrc.2001.5747
- Bourne, G.L. (1960). The microscopic anatomy of the human amnion and chorion. Am. J. Obstet. Gynecol. 79, 1070-1073. https://doi.org/10.1016/0002-9378(60)90512-3
- Chen, Y.J., Chung, M.C., Jane Yao, C.C., Huang, C.H., Chang, H.H., Jeng, J.H., and Young, T.H. (2012). The effects of acellular amniotic membrane matrix on osteogenic differentiation and ERK1/2 signaling in human dental apical papilla cells. Biomaterials 33, 455-463. https://doi.org/10.1016/j.biomaterials.2011.09.065
- Fatokun, A.A., Stone, T.W., and Smith, R.A. (2008). Responses of differentiated MC3T3-E1 osteoblast-like cells to reactive oxygen species. Eur. J. Pharmacol. 587, 35-41. https://doi.org/10.1016/j.ejphar.2008.03.024
- Franceschi, R.T., and Xiao, G. (2003). Regulation of the osteoblast-specific transcription factor, Runx2: responsiveness to multiple signal transduction pathways. J. Cell. Biochem. 88, 446-454. https://doi.org/10.1002/jcb.10369
- Franceschi, R.T., Xiao, G., Jiang, D., Gopalakrishnan, R., Yang, S., and Reith, E. (2003). Multiple signaling pathways converge on the Cbfa1/Runx2 transcription factor to regulate osteoblast differentiation. Connec. Tissue Res. 44 Suppl 1, 109-116. https://doi.org/10.1080/03008200390200256
- Franceschi, R.T., Ge, C., Xiao, G., Roca, H., and Jiang, D. (2009). Transcriptional regulation of osteoblasts. Cells Tissues Organs 189, 144-152. https://doi.org/10.1159/000151747
- Galli, C., Passeri, G., and Macaluso, G.M. (2010). Osteocytes and WNT: the mechanical control of bone formation. J. Dental Res. 89, 331-343. https://doi.org/10.1177/0022034510363963
- Haigis, M.C., and Sinclair, D.A. (2010). Mammalian sirtuins: biological insights and disease relevance. Ann. Rev. Pathol. 5, 253-295. https://doi.org/10.1146/annurev.pathol.4.110807.092250
- Hammond, C.L., and Schulte-Merker, S. (2009). Two populations of endochondral osteoblasts with differential sensitivity to Hedgehog signalling. Development 136, 3991-4000. https://doi.org/10.1242/dev.042150
- Herbert, B.A., Valerio, M.S., Gaestel, M., and Kirkwood, K.L. (2015). Sexual dimorphism in MAPK-activated protein kinase-2 (MK2) regulation of RANKL-induced osteoclastogenesis in osteoclast progenitor subpopulations. PLoS One 10, e0125387. https://doi.org/10.1371/journal.pone.0125387
- Hertz, J. (1956). Problems of maxillofacial and oral surgery. J. Int. College Surg. 26, 63-79.
- Hu, H.M., Yang, L., Wang, Z., Liu, Y.W., Fan, J.Z., Fan, J., Liu, J., and Luo, Z.J. (2013). Overexpression of integrin a2 promotes osteogenic differentiation of hBMSCs from senile osteoporosis through the ERK pathway. Int. J. Clin. Exp. Pathol. 6, 841-852.
- Hu, N., Feng, C., Jiang, Y., Miao, Q., and Liu, H. (2015). Regulative effect of Mir-205 on osteogenic differentiation of bone mesenchymal stem cells (BMSCs): possible role of SATB2/Runx2 and ERK/MAPK pathway. Int. J. Mol. Sci. 16, 10491-10506. https://doi.org/10.3390/ijms160510491
- Huang, Q., Gao, B., Wang, L., Zhang, H.Y., Li, X.J., Shi, J., Wang, Z., Zhang, J.K., Yang, L., Luo, Z.J., et al. (2015). Ophiopogonin D: A new herbal agent against osteoporosis. Bone 74, 18-28. https://doi.org/10.1016/j.bone.2015.01.002
- Ito, K., Yamada, Y., Naiki, T., and Ueda, M. (2006). Simultaneous implant placement and bone regeneration around dental implants using tissue-engineered bone with fibrin glue, mesenchymal stem cells and platelet-rich plasma. Clin. Oral. Implants Res. 17, 579-586. https://doi.org/10.1111/j.1600-0501.2006.01246.x
- Kang, Y., Kim, S., Fahrenholtz, M., Khademhosseini, A., and Yang, Y. (2013). Osteogenic and angiogenic potentials of monocultured and co-cultured human-bone-marrow-derived mesenchymal stem cells and human-umbilical-vein endothelial cells on three-dimensional porous beta-tricalcium phosphate scaffold. Acta Biomater. 9, 4906-4915. https://doi.org/10.1016/j.actbio.2012.08.008
- Karlin, J.R. (1971). Oral implantology. Greater Milw. Dent. Bull. 37, 226-231.
- Ki, Y.W., Park, J.H., Lee, J.E., Shin, I.C., and Koh, H.C. (2013). JNK and p38 MAPK regulate oxidative stress and the inflammatory response in chlorpyrifos-induced apoptosis. Toxicol. Lett. 218, 235-245. https://doi.org/10.1016/j.toxlet.2013.02.003
- Kim, S.H., Kim, K.H., Seo, B.M., Koo, K.T., Kim, T.I., Seol, Y.J., Ku, Y., Rhyu, I.C., Chung, C.P., and Lee, Y.M. (2009). Alveolar bone regeneration by transplantation of periodontal ligament stem cells and bone marrow stem cells in a canine peri-implant defect model: a pilot study. J. Periodontol. 80, 1815-1823. https://doi.org/10.1902/jop.2009.090249
- Krum, S.A., Chang, J., Miranda-Carboni, G., and Wang, C.Y. (2010). Novel functions for NFkappaB: inhibition of bone formation. Nat. Rev. Rheumatol. 6, 607-611. https://doi.org/10.1038/nrrheum.2010.133
- Leyva-Leyva, M., Barrera, L., Lopez-Camarillo, C., Arriaga-Pizano, L., Orozco-Hoyuela, G., Carrillo-Casas, E.M., Calderon-Perez, J., Lopez-Diaz, A., Hernandez-Aguilar, F., Gonzalez-Ramirez, R., et al. (2013). Characterization of mesenchymal stem cell subpopulations from human amniotic membrane with dissimilar osteoblastic potential. Stem Cells Dev. 22, 1275-1287. https://doi.org/10.1089/scd.2012.0359
- Lippuner, K. (2012). The future of osteoporosis treatment - a research update. Swiss medical weekly 142, w13624.
- Liu, A.L., Zhang, Z.M., Zhu, B.F., Liao, Z.H., and Liu, Z. (2004). Metallothionein protects bone marrow stromal cells against hydrogen peroxide-induced inhibition of osteoblastic differentiation. Cell Biol. Int. 28, 905-911. https://doi.org/10.1016/j.cellbi.2004.09.004
- Maggio, D., Barabani, M., Pierandrei, M., Polidori, M.C., Catani, M., Mecocci, P., Senin, U., Pacifici, R., and Cherubini, A. (2003). Marked decrease in plasma antioxidants in aged osteoporotic women: results of a cross-sectional study. J. Clin. Endocrinol. Metabol. 88, 1523-1527. https://doi.org/10.1210/jc.2002-021496
- Maire, P. (1997). [Calibrated autologous bone grafts--their use in oral implantology. Widening--crest augmentation. Personal technic]. Rev. Stomatol. Chir. Maxillofac. 98 Suppl 1, 27-30.
- Marcus, A.J., Coyne, T.M., Rauch, J., Woodbury, D., and Black, I.B. (2008). Isolation, characterization, and differentiation of stem cells derived from the rat amniotic membrane. Differentiation 76, 130-144. https://doi.org/10.1111/j.1432-0436.2007.00194.x
- Martindale, J.L., and Holbrook, N.J. (2002). Cellular response to oxidative stress: signaling for suicide and survival. J. Cell. Physiol. 192, 1-15. https://doi.org/10.1002/jcp.10119
- Mody, N., Parhami, F., Sarafian, T.A., and Demer, L.L. (2001). Oxidative stress modulates osteoblastic differentiation of vascular and bone cells. Free Radic. Biol. Med. 31, 509-519. https://doi.org/10.1016/S0891-5849(01)00610-4
- Moriwaki, S., Suzuki, K., Muramatsu, M., Nomura, A., Inoue, F., Into, T., Yoshiko, Y., and Niida, S. (2014). Delphinidin, one of the major anthocyanidins, prevents bone loss through the inhibition of excessive osteoclastogenesis in osteoporosis model mice. PLoS One 9, e97177. https://doi.org/10.1371/journal.pone.0097177
- Muthusami, S., Ramachandran, I., Muthusamy, B., Vasudevan, G., Prabhu, V., Subramaniam, V., Jagadeesan, A., and Narasimhan, S. (2005). Ovariectomy induces oxidative stress and impairs bone antioxidant system in adult rats. Clin. Chim. Acta 360, 81-86. https://doi.org/10.1016/j.cccn.2005.04.014
- Nakano, T., and Yatani, H. (2007). [Bone augmentation of dental implant treatment]. Clin. Calcium 17, 256-262.
- Ollivere, B., Wimhurst, J.A., Clark, I.M., and Donell, S.T. (2012). Current concepts in osteolysis. J. Bone Joint Surg. Br. 94, 10-15. https://doi.org/10.2106/JBJS.K.01292
- Ozeki, K., Aoki, H., and Fukui, Y. (2008). The effect of adsorbed vitamin D and K to hydroxyapatite on ALP activity of MC3T3-E1 cell. J. Mater. Sci. 19, 1753-1757.
- Ozgocmen, S., Kaya, H., Fadillioglu, E., Aydogan, R., and Yilmaz, Z. (2007). Role of antioxidant systems, lipid peroxidation, and nitric oxide in postmenopausal osteoporosis. Mol. Cell. Biochem. 295, 45-52. https://doi.org/10.1007/s11010-006-9270-z
- Phimphilai, M., Zhao, Z., Boules, H., Roca, H., and Franceschi, R.T. (2006). BMP signaling is required for RUNX2-dependent induction of the osteoblast phenotype. J. Bone Miner. Res. 21, 637-646. https://doi.org/10.1359/jbmr.060109
- Qin, L., Tang, B., Deng, B., Mohan, C., Wu, T., and Peng, A. (2015). Extracellular regulated protein kinases play a key role via bone morphogenetic protein 4 in high phosphate-induced endothelial cell apoptosis. Life Sci. 131, 37-43. https://doi.org/10.1016/j.lfs.2015.03.017
- Reinholz, G.G., Getz, B., Pederson, L., Sanders, E.S., Subramaniam, M., Ingle, J.N., and Spelsberg, T.C. (2000). Bisphosphonates directly regulate cell proliferation, differentiation, and gene expression in human osteoblasts. Cancer Res. 60, 6001-6007.
- Salasznyk, R.M., Klees, R.F., Hughlock, M.K., and Plopper, G.E. (2004). ERK signaling pathways regulate the osteogenic differentiation of human mesenchymal stem cells on collagen I and vitronectin. Cell Commun. Adhes. 11, 137-153. https://doi.org/10.1080/15419060500242836
- Schindeler, A., and Little, D.G. (2006). Ras-MAPK signaling in osteogenic differentiation: friend or foe? J. Bone Miner Res. 21, 1331-1338. https://doi.org/10.1359/jbmr.060603
- Schneider, G.B., Whitson, S.W., and Cooper, L.F. (1999). Restricted and coordinated expression of beta3-integrin and bone sialoprotein during cultured osteoblast differentiation. Bone 24, 321-327. https://doi.org/10.1016/S8756-3282(99)00007-1
- Sendur, O.F., Turan, Y., Tastaban, E., and Serter, M. (2009). Antioxidant status in patients with osteoporosis: a controlled study. Joint Bone Spine 76, 514-518. https://doi.org/10.1016/j.jbspin.2009.02.005
- Simmons, C.A., Matlis, S., Thornton, A.J., Chen, S., Wang, C.Y., and Mooney, D.J. (2003). Cyclic strain enhances matrix mineralization by adult human mesenchymal stem cells via the extracellular signal-regulated kinase (ERK1/2) signaling pathway. J. Biomech. 36, 1087-1096. https://doi.org/10.1016/S0021-9290(03)00110-6
- Sontakke, A.N., and Tare, R.S. (2002). A duality in the roles of reactive oxygen species with respect to bone metabolism. Clin. Chim. Acta 318, 145-148. https://doi.org/10.1016/S0009-8981(01)00766-5
- Stoler, A. (1984). Oral implantology today. Florida Dental J. 55, 36-37, 54.
- Tsuji, H., Miyoshi, S., Ikegami, Y., Hida, N., Asada, H., Togashi, I., Suzuki, J., Satake, M., Nakamizo, H., Tanaka, M., et al. (2010). Xenografted human amniotic membrane-derived mesenchymal stem cells are immunologically tolerated and transdifferentiated into cardiomyocytes. Circ. Res. 106, 1613-1623. https://doi.org/10.1161/CIRCRESAHA.109.205260
- Wang, S., Zhang, Z., Zhao, J., Zhang, X., Sun, X., Xia, L., Chang, Q., Ye, D., and Jiang, X. (2009). Vertical alveolar ridge augmentation with beta-tricalcium phosphate and autologous osteoblasts in canine mandible. Biomaterials 30, 2489-2498. https://doi.org/10.1016/j.biomaterials.2008.12.067
- Wang, W., Olson, D., Cheng, B., Guo, X., and Wang, K. (2012). Sanguis Draconis resin stimulates osteoblast alkaline phosphatase activity and mineralization in MC3T3-E1 cells. J. Ethnopharmacol. 142, 168-174. https://doi.org/10.1016/j.jep.2012.04.033
- Wang, Y., Yan, M., Yu, Y., Wu, J., Yu, J., and Fan, Z. (2013). Estrogen deficiency inhibits the odonto/osteogenic differentiation of dental pulp stem cells via activation of the NF-kappaB pathway. Cell Tissue Res. 352, 551-559. https://doi.org/10.1007/s00441-013-1604-z
- Wang, Y., Yin, Y., Jiang, F., and Chen, N. (2014). Human amnion mesenchymal stem cells promote proliferation and osteogenic differentiation in human bone marrow mesenchymal stem cells. J. Mol. Histol. 46, 13-20.
- Wang, Y., Yin, Y., Jiang, F., and Chen, N. (2015). Human amnion mesenchymal stem cells promote proliferation and osteogenic differentiation in human bone marrow mesenchymal stem cells. J. Mol. Histol. 46, 13-20. https://doi.org/10.1007/s10735-014-9600-5
- Witko-Sarsat, V., Friedlander, M., Capeillere-Blandin, C., Nguyen- Khoa, T., Nguyen, A.T., Zingraff, J., Jungers, P., and Descamps-Latscha, B. (1996). Advanced oxidation protein products as a novel marker of oxidative stress in uremia. Kidney Int. 49, 1304-1313. https://doi.org/10.1038/ki.1996.186
- Xia, Z., Dickens, M., Raingeaud, J., Davis, R.J., and Greenberg, M.E. (1995). Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 270, 1326-1331. https://doi.org/10.1126/science.270.5240.1326
- Xiao, G., Gopalakrishnan, R., Jiang, D., Reith, E., Benson, M.D., and Franceschi, R.T. (2002). Bone morphogenetic proteins, extracellular matrix, and mitogen-activated protein kinase signaling pathways are required for osteoblast-specific gene expression and differentiation in MC3T3-E1 cells. J. Bone Miner. Res. 17, 101-110. https://doi.org/10.1359/jbmr.2002.17.1.101
- Yang, S., Madyastha, P., Bingel, S., Ries, W., and Key, L. (2001). A new superoxide-generating oxidase in murine osteoclasts. J. Biol. Chem. 276, 5452-5458. https://doi.org/10.1074/jbc.M001004200
- Zeng, X., Tian, J., Cai, K., Wu, X., Wang, Y., Zheng, Y., Su, Y., and Cui, L. (2014). Promoting osteoblast differentiation by the flavanes from Huangshan Maofeng tea is linked to a reduction of oxidative stress. Phytomedicine 21, 217-224. https://doi.org/10.1016/j.phymed.2013.08.026
- Zhang, W., and Liu, H.T. (2002). MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res. 12, 9-18. https://doi.org/10.1038/sj.cr.7290105
- Zhang, D., Jiang, M., and Miao, D. (2011). Transplanted human amniotic membrane-derived mesenchymal stem cells ameliorate carbon tetrachloride-induced liver cirrhosis in mouse. PLoS One 6, e16789. https://doi.org/10.1371/journal.pone.0016789
- Zhao, J., Zhang, Z., Wang, S., Sun, X., Zhang, X., Chen, J., Kaplan, D.L., and Jiang, X. (2009). Apatite-coated silk fibroin scaffolds to healing mandibular border defects in canines. Bone 45, 517-527. https://doi.org/10.1016/j.bone.2009.05.026
Cited by
- Hydrogen sulfide promotes osteogenic differentiation of human periodontal ligament cells via p38-MAPK signaling pathway under proper tension stimulation vol.72, 2016, https://doi.org/10.1016/j.archoralbio.2016.08.008
- Human amnion-derived mesenchymal stem cells induced osteogenesis and angiogenesis in human adipose-derived stem cells via ERK1/2 MAPK signaling pathway vol.51, pp.4, 2018, https://doi.org/10.5483/BMBRep.2018.51.4.005
- Human amnion-derived mesenchymal stem cells promote osteogenic and angiogenic differentiation of human adipose-derived stem cells vol.12, pp.10, 2016, https://doi.org/10.1371/journal.pone.0186253
- Human amniotic epithelial cells regulate osteoblast differentiation through the secretion of TGFβ 1 and microRNA-34a-5p vol.41, pp.2, 2018, https://doi.org/10.3892/ijmm.2017.3261
- Erythropoietin induces the osteogenesis of periodontal mesenchymal stem cells from healthy and periodontitis sources via activation of the p38 MAPK pathway vol.41, pp.2, 2016, https://doi.org/10.3892/ijmm.2017.3294
- KR-12-a5 Reverses Adverse Effects of Lipopolysaccharides on HBMSC Osteogenic Differentiation by Influencing BMP/Smad and P38 MAPK Signaling Pathways vol.10, pp.None, 2016, https://doi.org/10.3389/fphar.2019.00639
- Human amnion‐derived mesenchymal stem cells promote osteogenesis of human bone marrow mesenchymal stem cells against glucolipotoxicity vol.9, pp.1, 2016, https://doi.org/10.1002/2211-5463.12547
- Differential response of immortalized human amnion mesenchymal and epithelial cells against oxidative stress vol.135, pp.None, 2019, https://doi.org/10.1016/j.freeradbiomed.2019.02.017
- Antioxidant Properties of Tonsil-Derived Mesenchymal Stem Cells on Human Vocal Fold Fibroblast Exposed to Oxidative Stress vol.2020, pp.None, 2016, https://doi.org/10.1155/2020/2560828
- Ganoderic Acid D Protects Human Amniotic Mesenchymal Stem Cells against Oxidative Stress-Induced Senescence through the PERK/NRF2 Signaling Pathway vol.2020, pp.None, 2020, https://doi.org/10.1155/2020/8291413
- Human amnion-derived mesenchymal stem cells promote osteogenic differentiation of human bone marrow mesenchymal stem cells via H19/miR-675/APC axis vol.12, pp.11, 2016, https://doi.org/10.18632/aging.103277
- LOXL2 from human amniotic mesenchymal stem cells accelerates wound epithelialization by promoting differentiation and migration of keratinocytes vol.12, pp.13, 2020, https://doi.org/10.18632/aging.103384
- Comparison of Anti-Oxidative Effect of Human Adipose- and Amniotic Membrane-Derived Mesenchymal Stem Cell Conditioned Medium on Mouse Preimplantation Embryo Development vol.10, pp.2, 2016, https://doi.org/10.3390/antiox10020268
- Mesenchymal Stem Cell Transplantation for the Treatment of Cognitive Frailty vol.25, pp.6, 2021, https://doi.org/10.1007/s12603-021-1632-4