DOI QR코드

DOI QR Code

Human Amnion-Derived Mesenchymal Stem Cells Protect Human Bone Marrow Mesenchymal Stem Cells against Oxidative Stress-Mediated Dysfunction via ERK1/2 MAPK Signaling

  • Wang, Yuli (Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University) ;
  • Ma, Junchi (Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University) ;
  • Du, Yifei (Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University) ;
  • Miao, Jing (Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University) ;
  • Chen, Ning (Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University)
  • Received : 2015.06.03
  • Accepted : 2015.11.23
  • Published : 2016.03.31

Abstract

Epidemiological evidence suggests that bone is especially sensitive to oxidative stress, causing bone loss in the elderly. Previous studies indicated that human amnion-derived mesenchymal stem cells (HAMSCs), obtained from human amniotic membranes, exerted osteoprotective effects in vivo. However, the potential of HAMSCs as seed cells against oxidative stress-mediated dysfunction is unknown. In this study, we systemically investigated their antioxidative and osteogenic effects in vitro. Here, we demonstrated that HAMSCs significantly promoted the proliferation and osteoblastic differentiation of $H_2O_2$-induced human bone marrow mesenchymal stem cells (HBMSCs), and down-regulated the reactive oxygen species (ROS) level. Further, our results suggest that activation of the ERK1/2 MAPK signal transduction pathway is essential for both HAMSCs-mediated osteogenic and protective effects against oxidative stress-induced dysfunction in HBMSCs. U0126, a highly selective inhibitor of extracellular ERK1/2 MAPK signaling, significantly suppressed the antioxidative and osteogenic effects in HAMSCs. In conclusion, by modulating HBMSCs, HAMSCs show a strong potential in treating oxidative stress- mediated bone deficiency.

Keywords

References

  1. Baek, K.H., Oh, K.W., Lee, W.Y., Lee, S.S., Kim, M.K., Kwon, H.S., Rhee, E.J., Han, J.H., Song, K.H., Cha, B.Y., et al. (2010). Association of oxidative stress with postmenopausal osteoporosis and the effects of hydrogen peroxide on osteoclast formation in human bone marrow cell cultures. Calcif. Tissue Int. 87, 226-235. https://doi.org/10.1007/s00223-010-9393-9
  2. Bai, X.C., Lu, D., Bai, J., Zheng, H., Ke, Z.Y., Li, X.M., and Luo, S.Q. (2004). Oxidative stress inhibits osteoblastic differentiation of bone cells by ERK and NF-kappaB. Biochem. Biophys. Res. Commun. 314, 197-207. https://doi.org/10.1016/j.bbrc.2003.12.073
  3. Basu, S., Michaelsson, K., Olofsson, H., Johansson, S., and Melhus, H. (2001). Association between oxidative stress and bone mineral density. Biochem. Biophys. Res. Commun. 288, 275-279. https://doi.org/10.1006/bbrc.2001.5747
  4. Bourne, G.L. (1960). The microscopic anatomy of the human amnion and chorion. Am. J. Obstet. Gynecol. 79, 1070-1073. https://doi.org/10.1016/0002-9378(60)90512-3
  5. Chen, Y.J., Chung, M.C., Jane Yao, C.C., Huang, C.H., Chang, H.H., Jeng, J.H., and Young, T.H. (2012). The effects of acellular amniotic membrane matrix on osteogenic differentiation and ERK1/2 signaling in human dental apical papilla cells. Biomaterials 33, 455-463. https://doi.org/10.1016/j.biomaterials.2011.09.065
  6. Fatokun, A.A., Stone, T.W., and Smith, R.A. (2008). Responses of differentiated MC3T3-E1 osteoblast-like cells to reactive oxygen species. Eur. J. Pharmacol. 587, 35-41. https://doi.org/10.1016/j.ejphar.2008.03.024
  7. Franceschi, R.T., and Xiao, G. (2003). Regulation of the osteoblast-specific transcription factor, Runx2: responsiveness to multiple signal transduction pathways. J. Cell. Biochem. 88, 446-454. https://doi.org/10.1002/jcb.10369
  8. Franceschi, R.T., Xiao, G., Jiang, D., Gopalakrishnan, R., Yang, S., and Reith, E. (2003). Multiple signaling pathways converge on the Cbfa1/Runx2 transcription factor to regulate osteoblast differentiation. Connec. Tissue Res. 44 Suppl 1, 109-116. https://doi.org/10.1080/03008200390200256
  9. Franceschi, R.T., Ge, C., Xiao, G., Roca, H., and Jiang, D. (2009). Transcriptional regulation of osteoblasts. Cells Tissues Organs 189, 144-152. https://doi.org/10.1159/000151747
  10. Galli, C., Passeri, G., and Macaluso, G.M. (2010). Osteocytes and WNT: the mechanical control of bone formation. J. Dental Res. 89, 331-343. https://doi.org/10.1177/0022034510363963
  11. Haigis, M.C., and Sinclair, D.A. (2010). Mammalian sirtuins: biological insights and disease relevance. Ann. Rev. Pathol. 5, 253-295. https://doi.org/10.1146/annurev.pathol.4.110807.092250
  12. Hammond, C.L., and Schulte-Merker, S. (2009). Two populations of endochondral osteoblasts with differential sensitivity to Hedgehog signalling. Development 136, 3991-4000. https://doi.org/10.1242/dev.042150
  13. Herbert, B.A., Valerio, M.S., Gaestel, M., and Kirkwood, K.L. (2015). Sexual dimorphism in MAPK-activated protein kinase-2 (MK2) regulation of RANKL-induced osteoclastogenesis in osteoclast progenitor subpopulations. PLoS One 10, e0125387. https://doi.org/10.1371/journal.pone.0125387
  14. Hertz, J. (1956). Problems of maxillofacial and oral surgery. J. Int. College Surg. 26, 63-79.
  15. Hu, H.M., Yang, L., Wang, Z., Liu, Y.W., Fan, J.Z., Fan, J., Liu, J., and Luo, Z.J. (2013). Overexpression of integrin a2 promotes osteogenic differentiation of hBMSCs from senile osteoporosis through the ERK pathway. Int. J. Clin. Exp. Pathol. 6, 841-852.
  16. Hu, N., Feng, C., Jiang, Y., Miao, Q., and Liu, H. (2015). Regulative effect of Mir-205 on osteogenic differentiation of bone mesenchymal stem cells (BMSCs): possible role of SATB2/Runx2 and ERK/MAPK pathway. Int. J. Mol. Sci. 16, 10491-10506. https://doi.org/10.3390/ijms160510491
  17. Huang, Q., Gao, B., Wang, L., Zhang, H.Y., Li, X.J., Shi, J., Wang, Z., Zhang, J.K., Yang, L., Luo, Z.J., et al. (2015). Ophiopogonin D: A new herbal agent against osteoporosis. Bone 74, 18-28. https://doi.org/10.1016/j.bone.2015.01.002
  18. Ito, K., Yamada, Y., Naiki, T., and Ueda, M. (2006). Simultaneous implant placement and bone regeneration around dental implants using tissue-engineered bone with fibrin glue, mesenchymal stem cells and platelet-rich plasma. Clin. Oral. Implants Res. 17, 579-586. https://doi.org/10.1111/j.1600-0501.2006.01246.x
  19. Kang, Y., Kim, S., Fahrenholtz, M., Khademhosseini, A., and Yang, Y. (2013). Osteogenic and angiogenic potentials of monocultured and co-cultured human-bone-marrow-derived mesenchymal stem cells and human-umbilical-vein endothelial cells on three-dimensional porous beta-tricalcium phosphate scaffold. Acta Biomater. 9, 4906-4915. https://doi.org/10.1016/j.actbio.2012.08.008
  20. Karlin, J.R. (1971). Oral implantology. Greater Milw. Dent. Bull. 37, 226-231.
  21. Ki, Y.W., Park, J.H., Lee, J.E., Shin, I.C., and Koh, H.C. (2013). JNK and p38 MAPK regulate oxidative stress and the inflammatory response in chlorpyrifos-induced apoptosis. Toxicol. Lett. 218, 235-245. https://doi.org/10.1016/j.toxlet.2013.02.003
  22. Kim, S.H., Kim, K.H., Seo, B.M., Koo, K.T., Kim, T.I., Seol, Y.J., Ku, Y., Rhyu, I.C., Chung, C.P., and Lee, Y.M. (2009). Alveolar bone regeneration by transplantation of periodontal ligament stem cells and bone marrow stem cells in a canine peri-implant defect model: a pilot study. J. Periodontol. 80, 1815-1823. https://doi.org/10.1902/jop.2009.090249
  23. Krum, S.A., Chang, J., Miranda-Carboni, G., and Wang, C.Y. (2010). Novel functions for NFkappaB: inhibition of bone formation. Nat. Rev. Rheumatol. 6, 607-611. https://doi.org/10.1038/nrrheum.2010.133
  24. Leyva-Leyva, M., Barrera, L., Lopez-Camarillo, C., Arriaga-Pizano, L., Orozco-Hoyuela, G., Carrillo-Casas, E.M., Calderon-Perez, J., Lopez-Diaz, A., Hernandez-Aguilar, F., Gonzalez-Ramirez, R., et al. (2013). Characterization of mesenchymal stem cell subpopulations from human amniotic membrane with dissimilar osteoblastic potential. Stem Cells Dev. 22, 1275-1287. https://doi.org/10.1089/scd.2012.0359
  25. Lippuner, K. (2012). The future of osteoporosis treatment - a research update. Swiss medical weekly 142, w13624.
  26. Liu, A.L., Zhang, Z.M., Zhu, B.F., Liao, Z.H., and Liu, Z. (2004). Metallothionein protects bone marrow stromal cells against hydrogen peroxide-induced inhibition of osteoblastic differentiation. Cell Biol. Int. 28, 905-911. https://doi.org/10.1016/j.cellbi.2004.09.004
  27. Maggio, D., Barabani, M., Pierandrei, M., Polidori, M.C., Catani, M., Mecocci, P., Senin, U., Pacifici, R., and Cherubini, A. (2003). Marked decrease in plasma antioxidants in aged osteoporotic women: results of a cross-sectional study. J. Clin. Endocrinol. Metabol. 88, 1523-1527. https://doi.org/10.1210/jc.2002-021496
  28. Maire, P. (1997). [Calibrated autologous bone grafts--their use in oral implantology. Widening--crest augmentation. Personal technic]. Rev. Stomatol. Chir. Maxillofac. 98 Suppl 1, 27-30.
  29. Marcus, A.J., Coyne, T.M., Rauch, J., Woodbury, D., and Black, I.B. (2008). Isolation, characterization, and differentiation of stem cells derived from the rat amniotic membrane. Differentiation 76, 130-144. https://doi.org/10.1111/j.1432-0436.2007.00194.x
  30. Martindale, J.L., and Holbrook, N.J. (2002). Cellular response to oxidative stress: signaling for suicide and survival. J. Cell. Physiol. 192, 1-15. https://doi.org/10.1002/jcp.10119
  31. Mody, N., Parhami, F., Sarafian, T.A., and Demer, L.L. (2001). Oxidative stress modulates osteoblastic differentiation of vascular and bone cells. Free Radic. Biol. Med. 31, 509-519. https://doi.org/10.1016/S0891-5849(01)00610-4
  32. Moriwaki, S., Suzuki, K., Muramatsu, M., Nomura, A., Inoue, F., Into, T., Yoshiko, Y., and Niida, S. (2014). Delphinidin, one of the major anthocyanidins, prevents bone loss through the inhibition of excessive osteoclastogenesis in osteoporosis model mice. PLoS One 9, e97177. https://doi.org/10.1371/journal.pone.0097177
  33. Muthusami, S., Ramachandran, I., Muthusamy, B., Vasudevan, G., Prabhu, V., Subramaniam, V., Jagadeesan, A., and Narasimhan, S. (2005). Ovariectomy induces oxidative stress and impairs bone antioxidant system in adult rats. Clin. Chim. Acta 360, 81-86. https://doi.org/10.1016/j.cccn.2005.04.014
  34. Nakano, T., and Yatani, H. (2007). [Bone augmentation of dental implant treatment]. Clin. Calcium 17, 256-262.
  35. Ollivere, B., Wimhurst, J.A., Clark, I.M., and Donell, S.T. (2012). Current concepts in osteolysis. J. Bone Joint Surg. Br. 94, 10-15. https://doi.org/10.2106/JBJS.K.01292
  36. Ozeki, K., Aoki, H., and Fukui, Y. (2008). The effect of adsorbed vitamin D and K to hydroxyapatite on ALP activity of MC3T3-E1 cell. J. Mater. Sci. 19, 1753-1757.
  37. Ozgocmen, S., Kaya, H., Fadillioglu, E., Aydogan, R., and Yilmaz, Z. (2007). Role of antioxidant systems, lipid peroxidation, and nitric oxide in postmenopausal osteoporosis. Mol. Cell. Biochem. 295, 45-52. https://doi.org/10.1007/s11010-006-9270-z
  38. Phimphilai, M., Zhao, Z., Boules, H., Roca, H., and Franceschi, R.T. (2006). BMP signaling is required for RUNX2-dependent induction of the osteoblast phenotype. J. Bone Miner. Res. 21, 637-646. https://doi.org/10.1359/jbmr.060109
  39. Qin, L., Tang, B., Deng, B., Mohan, C., Wu, T., and Peng, A. (2015). Extracellular regulated protein kinases play a key role via bone morphogenetic protein 4 in high phosphate-induced endothelial cell apoptosis. Life Sci. 131, 37-43. https://doi.org/10.1016/j.lfs.2015.03.017
  40. Reinholz, G.G., Getz, B., Pederson, L., Sanders, E.S., Subramaniam, M., Ingle, J.N., and Spelsberg, T.C. (2000). Bisphosphonates directly regulate cell proliferation, differentiation, and gene expression in human osteoblasts. Cancer Res. 60, 6001-6007.
  41. Salasznyk, R.M., Klees, R.F., Hughlock, M.K., and Plopper, G.E. (2004). ERK signaling pathways regulate the osteogenic differentiation of human mesenchymal stem cells on collagen I and vitronectin. Cell Commun. Adhes. 11, 137-153. https://doi.org/10.1080/15419060500242836
  42. Schindeler, A., and Little, D.G. (2006). Ras-MAPK signaling in osteogenic differentiation: friend or foe? J. Bone Miner Res. 21, 1331-1338. https://doi.org/10.1359/jbmr.060603
  43. Schneider, G.B., Whitson, S.W., and Cooper, L.F. (1999). Restricted and coordinated expression of beta3-integrin and bone sialoprotein during cultured osteoblast differentiation. Bone 24, 321-327. https://doi.org/10.1016/S8756-3282(99)00007-1
  44. Sendur, O.F., Turan, Y., Tastaban, E., and Serter, M. (2009). Antioxidant status in patients with osteoporosis: a controlled study. Joint Bone Spine 76, 514-518. https://doi.org/10.1016/j.jbspin.2009.02.005
  45. Simmons, C.A., Matlis, S., Thornton, A.J., Chen, S., Wang, C.Y., and Mooney, D.J. (2003). Cyclic strain enhances matrix mineralization by adult human mesenchymal stem cells via the extracellular signal-regulated kinase (ERK1/2) signaling pathway. J. Biomech. 36, 1087-1096. https://doi.org/10.1016/S0021-9290(03)00110-6
  46. Sontakke, A.N., and Tare, R.S. (2002). A duality in the roles of reactive oxygen species with respect to bone metabolism. Clin. Chim. Acta 318, 145-148. https://doi.org/10.1016/S0009-8981(01)00766-5
  47. Stoler, A. (1984). Oral implantology today. Florida Dental J. 55, 36-37, 54.
  48. Tsuji, H., Miyoshi, S., Ikegami, Y., Hida, N., Asada, H., Togashi, I., Suzuki, J., Satake, M., Nakamizo, H., Tanaka, M., et al. (2010). Xenografted human amniotic membrane-derived mesenchymal stem cells are immunologically tolerated and transdifferentiated into cardiomyocytes. Circ. Res. 106, 1613-1623. https://doi.org/10.1161/CIRCRESAHA.109.205260
  49. Wang, S., Zhang, Z., Zhao, J., Zhang, X., Sun, X., Xia, L., Chang, Q., Ye, D., and Jiang, X. (2009). Vertical alveolar ridge augmentation with beta-tricalcium phosphate and autologous osteoblasts in canine mandible. Biomaterials 30, 2489-2498. https://doi.org/10.1016/j.biomaterials.2008.12.067
  50. Wang, W., Olson, D., Cheng, B., Guo, X., and Wang, K. (2012). Sanguis Draconis resin stimulates osteoblast alkaline phosphatase activity and mineralization in MC3T3-E1 cells. J. Ethnopharmacol. 142, 168-174. https://doi.org/10.1016/j.jep.2012.04.033
  51. Wang, Y., Yan, M., Yu, Y., Wu, J., Yu, J., and Fan, Z. (2013). Estrogen deficiency inhibits the odonto/osteogenic differentiation of dental pulp stem cells via activation of the NF-kappaB pathway. Cell Tissue Res. 352, 551-559. https://doi.org/10.1007/s00441-013-1604-z
  52. Wang, Y., Yin, Y., Jiang, F., and Chen, N. (2014). Human amnion mesenchymal stem cells promote proliferation and osteogenic differentiation in human bone marrow mesenchymal stem cells. J. Mol. Histol. 46, 13-20.
  53. Wang, Y., Yin, Y., Jiang, F., and Chen, N. (2015). Human amnion mesenchymal stem cells promote proliferation and osteogenic differentiation in human bone marrow mesenchymal stem cells. J. Mol. Histol. 46, 13-20. https://doi.org/10.1007/s10735-014-9600-5
  54. Witko-Sarsat, V., Friedlander, M., Capeillere-Blandin, C., Nguyen- Khoa, T., Nguyen, A.T., Zingraff, J., Jungers, P., and Descamps-Latscha, B. (1996). Advanced oxidation protein products as a novel marker of oxidative stress in uremia. Kidney Int. 49, 1304-1313. https://doi.org/10.1038/ki.1996.186
  55. Xia, Z., Dickens, M., Raingeaud, J., Davis, R.J., and Greenberg, M.E. (1995). Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 270, 1326-1331. https://doi.org/10.1126/science.270.5240.1326
  56. Xiao, G., Gopalakrishnan, R., Jiang, D., Reith, E., Benson, M.D., and Franceschi, R.T. (2002). Bone morphogenetic proteins, extracellular matrix, and mitogen-activated protein kinase signaling pathways are required for osteoblast-specific gene expression and differentiation in MC3T3-E1 cells. J. Bone Miner. Res. 17, 101-110. https://doi.org/10.1359/jbmr.2002.17.1.101
  57. Yang, S., Madyastha, P., Bingel, S., Ries, W., and Key, L. (2001). A new superoxide-generating oxidase in murine osteoclasts. J. Biol. Chem. 276, 5452-5458. https://doi.org/10.1074/jbc.M001004200
  58. Zeng, X., Tian, J., Cai, K., Wu, X., Wang, Y., Zheng, Y., Su, Y., and Cui, L. (2014). Promoting osteoblast differentiation by the flavanes from Huangshan Maofeng tea is linked to a reduction of oxidative stress. Phytomedicine 21, 217-224. https://doi.org/10.1016/j.phymed.2013.08.026
  59. Zhang, W., and Liu, H.T. (2002). MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res. 12, 9-18. https://doi.org/10.1038/sj.cr.7290105
  60. Zhang, D., Jiang, M., and Miao, D. (2011). Transplanted human amniotic membrane-derived mesenchymal stem cells ameliorate carbon tetrachloride-induced liver cirrhosis in mouse. PLoS One 6, e16789. https://doi.org/10.1371/journal.pone.0016789
  61. Zhao, J., Zhang, Z., Wang, S., Sun, X., Zhang, X., Chen, J., Kaplan, D.L., and Jiang, X. (2009). Apatite-coated silk fibroin scaffolds to healing mandibular border defects in canines. Bone 45, 517-527. https://doi.org/10.1016/j.bone.2009.05.026

Cited by

  1. Hydrogen sulfide promotes osteogenic differentiation of human periodontal ligament cells via p38-MAPK signaling pathway under proper tension stimulation vol.72, 2016, https://doi.org/10.1016/j.archoralbio.2016.08.008
  2. Human amnion-derived mesenchymal stem cells induced osteogenesis and angiogenesis in human adipose-derived stem cells via ERK1/2 MAPK signaling pathway vol.51, pp.4, 2018, https://doi.org/10.5483/BMBRep.2018.51.4.005
  3. Human amnion-derived mesenchymal stem cells promote osteogenic and angiogenic differentiation of human adipose-derived stem cells vol.12, pp.10, 2016, https://doi.org/10.1371/journal.pone.0186253
  4. Human amniotic epithelial cells regulate osteoblast differentiation through the secretion of TGFβ 1 and microRNA-34a-5p vol.41, pp.2, 2018, https://doi.org/10.3892/ijmm.2017.3261
  5. Erythropoietin induces the osteogenesis of periodontal mesenchymal stem cells from healthy and periodontitis sources via activation of the p38 MAPK pathway vol.41, pp.2, 2016, https://doi.org/10.3892/ijmm.2017.3294
  6. KR-12-a5 Reverses Adverse Effects of Lipopolysaccharides on HBMSC Osteogenic Differentiation by Influencing BMP/Smad and P38 MAPK Signaling Pathways vol.10, pp.None, 2016, https://doi.org/10.3389/fphar.2019.00639
  7. Human amnion‐derived mesenchymal stem cells promote osteogenesis of human bone marrow mesenchymal stem cells against glucolipotoxicity vol.9, pp.1, 2016, https://doi.org/10.1002/2211-5463.12547
  8. Differential response of immortalized human amnion mesenchymal and epithelial cells against oxidative stress vol.135, pp.None, 2019, https://doi.org/10.1016/j.freeradbiomed.2019.02.017
  9. Antioxidant Properties of Tonsil-Derived Mesenchymal Stem Cells on Human Vocal Fold Fibroblast Exposed to Oxidative Stress vol.2020, pp.None, 2016, https://doi.org/10.1155/2020/2560828
  10. Ganoderic Acid D Protects Human Amniotic Mesenchymal Stem Cells against Oxidative Stress-Induced Senescence through the PERK/NRF2 Signaling Pathway vol.2020, pp.None, 2020, https://doi.org/10.1155/2020/8291413
  11. Human amnion-derived mesenchymal stem cells promote osteogenic differentiation of human bone marrow mesenchymal stem cells via H19/miR-675/APC axis vol.12, pp.11, 2016, https://doi.org/10.18632/aging.103277
  12. LOXL2 from human amniotic mesenchymal stem cells accelerates wound epithelialization by promoting differentiation and migration of keratinocytes vol.12, pp.13, 2020, https://doi.org/10.18632/aging.103384
  13. Comparison of Anti-Oxidative Effect of Human Adipose- and Amniotic Membrane-Derived Mesenchymal Stem Cell Conditioned Medium on Mouse Preimplantation Embryo Development vol.10, pp.2, 2016, https://doi.org/10.3390/antiox10020268
  14. Mesenchymal Stem Cell Transplantation for the Treatment of Cognitive Frailty vol.25, pp.6, 2021, https://doi.org/10.1007/s12603-021-1632-4