DOI QR코드

DOI QR Code

UHPLC/TOFHRMS analysis and anti-inflammatory effect of leaf extracts from Zizyphus jujuba in LPS-stimulated RAW264.7 cells

  • Hyun Ji Eo (Special Forest Resources Division, Department of Forest Bio-Resources, National Institute of Forest Science) ;
  • Sun-Young Lee (Forest Medicinal Resources Research Center, National Institute of Forest Science) ;
  • Gwang Hun Park (Forest Medicinal Resources Research Center, National Institute of Forest Science)
  • Received : 2022.11.01
  • Accepted : 2023.02.10
  • Published : 2023.03.29

Abstract

Zizyphus jujube is a plant in the buckthorn family (Rhamnaceae) that has been the subject of research into antibacterial, antifungal and anti-inflammatory properties of its fruit and seed. However, few studies have investigated its leaves. In this study, the anti-inflammatory activity of ZJL (an extract of Z. jujube leaf) was evaluated to verify its potential as an anti-inflammatory agent and SARS-CoV-2 medicine, using nitric oxide (NO) assay, RT-PCR, SDSPAGE, Western blotting, and UHPLC/TOFHRMS analysis. We found that ZJL suppresed pro-inflammatory mediators such as NO, inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and tumor necrosis factor α (TNF-α) in lipopolysaccharide (LPS)-induced RAW264.7 cells. ZJL acted by inhibiting NF-KB and MAPK signaling pathway activity. We also confirmed that ZJL contains a phenol compound and flavonoids with anti-inflammatory activity such as trehalose, maleate, epigallocatechin, hyperoside, catechin, 3-O-coumaroylquinic acid, rhoifolin, gossypin, kaempferol 3-neohesperidoside, rutin, myricitrin, guaiaverin, quercitrin, quercetin, ursolic acid, and pheophorbide a. These findings suggest that ZJL may have great potential for the development of anti-inflammatory drugs and vaccines via inhibition of NF-κB and MAPK signaling in LPS-induced RAW264.7 cells.

Keywords

Acknowledgement

This work was supported by a grant from National Institute of Forest Science (project number: FP0400-2019-01-2022).

References

  1. Checker R, Sandur SK, Sharma D, Patwardhan RS, Jayakumar S, Kohli V, Sethi G, Aggarwal BB, Sainis KB (2012) Potent Anti-Inflammatory Activity of Ursolic Acid, a Triterpenoid Antioxidant, Is Mediated through Suppression of NF-κB, AP-1 and NF-AT. PLOS ONE 7(2):e31318. https://doi.org/10.1371/journal.pone.0031318
  2. Cinar I, Sirin B, Aydin P, Toktay E, Cadirci E, Halici I, Halici Z (2019) Ameliorative effect of gossypin against acute lung injury in experimental sepsis model of rats. Life Sci 221:327-334. doi: 10.1016/j.lfs.2019.02.039
  3. Comalada M, Camuesco D, Sierra S, Ballester I, Xaus J, Galvez J, Zarzuelo A (2005) In vivo quercitrin anti-inflammatory effect involves release of quercetin, which inhibits inflammation through down-regulation of the NF-kappaB pathway. Eur J Immunol 35(2):584-592. doi: 10.1002/eji.200425778
  4. Damiano S, Forino M, De A, Vitali LA, Lupidi G, TaglialatelaScafati O (2017) Antioxidant and antibiofilm activities of secondary metabolites from Ziziphus jujuba leaves used for infusion preparation. Food Chemistry 230:24-29 https://doi.org/10.1016/j.foodchem.2017.02.141
  5. Domitrovic R, Rashed K, Cvijanovic O, Vladimir-Knezevic S, Skoda M, Visnic A (2015) Myricitrin exhibits antioxidant, anti-inflammatory and antifibrotic activity in carbon tetrachloride-intoxicated mice. Chem Biol Interact 230:21-29. doi: 10.1016/j.cbi.2015.01.030
  6. Echigo R, Shimohata N, Karatsu K, Yano F, Kayasuga-Kariya Y, Fujisawa A, Ohto T, Kita Y, Nakamura M, Suzuki S, Mochizuki M, Shimizu T, Chung UI, Sasaki N (2012) Trehalose treatment suppresses inflammation, oxidative stress, and vasospasm induced by experimental subarachnoid hemorrhage. J Transl Med 10:80. doi: 10.1186/1479-5876-10-80
  7. Eldahshan OA, Azab SS (2012) Anti-inflammatory Effect of Apigenin-7-neohesperidoside (Rhoifolin) in CarrageeninInduced Rat Oedema Model. Journal of Applied Pharmaceutical Science 2(8):74-79. doi: 10.7324/JAPS.2012.2811
  8. Fan FY, Sang LX, Jiang M (2017) Catechins and Their Therapeutic Benefits to Inflammatory Bowel Disease. Molecules 22(3): 484. doi: 10.3390/molecules22030484
  9. Ghani A, Amini S, Mohtashami S, Neamati SH (2022) Physicochemical and biochemical variations of jujube (Ziziphus jujuba Mill.) populations: A comparison of Iranian and imported types. Industrial Crops & Products 183:114898
  10. Guardia T, Rotelli AE, Juarez AO, Pelzer LE (2001) Anti-inflammatory properties of plant flavonoids. Effects of rutin, quercetin and hesperidin on adjuvant arthritis in rat. Il Farmaco 56(9):683-687. https://doi.org/10.1016/S0014-827X(01)01111-9
  11. Hariharan A, Hakeem AR, Radhakrishnan S, Reddy MS, Rela M (2021) The role and therapeutic potential of nf-kappa-b pathway in severe COVID-19 patients. Inflammopharmacology 29:91-100. DOI: 10.1007/s10787-020-00773-9
  12. Hong EH, Song JH, Kang KB, Sung SH, Ko HJ, Yang HJ (2015) Anti-Influenza Activity of Betulinic Acid from Zizyphus jujuba on Influenza A/PR/8 Virus. Biomolecules & Therapeutics 23(4):345-349
  13. Kim JM, Heo HJ (2022) The roles of catechins in regulation of systemic inflammation. Food Sci Biotechnol. https://doi.org/10.1007/s10068-022-01069-0
  14. Kim SJ, Um JY, Lee JY (2011) Anti-inflammatory activity of hyperoside through the suppression of nuclear factor-κB activation in mouse peritoneal macrophages. Am J Chin Med 39(1):171-181. DOI: 10.1142/S0192415X11008737
  15. Kircheis R, Haasbach E, Lueftenegger D, Heyken WT, Ocker M, Planz O (2020) NF-κB Pathway as a Potential Target for Treatment of Critical Stage COVID-19 Patients. Front Immunol 11:598444. https://doi.org/10.3389/fimmu.2020.598444
  16. Lee JS, Choi JW, Sohng JK, Pandey RP, Park YI (2016) The immunostimulating activity of quercetin 3-O-xyloside in murine macrophages via activation of the ASK1/MAPK/NF-κB signaling pathway. International Immunopharmacology 31:88-97 https://doi.org/10.1016/j.intimp.2015.12.008
  17. Lee SM, Park JG, Lee YH, Lee CG, Min BS, Kim JH, Lee HK (2004) Anti-complementary Activity of Triterpenoides from Fruits of Zizyphus jujuba. Biol Pharm Bull 27(11):1883-1886 https://doi.org/10.1248/bpb.27.1883
  18. Nakamura Y, Murakami A, Koshimizu K, Ohigashi H (1996) Inhibitory effect of pheophorbide a, a chlorophyll-related compound, on skin tumor promotion in ICR mouse. Cancer Letters 108(2):247-255 https://doi.org/10.1016/S0304-3835(96)04422-9
  19. Peng S, Hu C, Liu X, Lei L, He G, Xiong C, Wu W (2020) Rhoifolin regulates oxidative stress and proinflammatory cytokine levels in Freund's adjuvant-induced rheumatoid arthritis via inhibition of NF-κB. Braz J Med Biol Res 53(6):9489. doi: 10.1590/1414-431X20209489
  20. Ragab D, Eldin HS, Taeimah M, Khattab R and Salem R (2020) The COVID-19 Cytokine Storm; What We Know So Far. Frontiers in Immunology 11:1446. https://doi.org/10.3389/fimmu.2020.01446
  21. Saeedi-Boroujeni A, Mahmoudian-Sani MR (2021) Anti-inflammatory potential of Quercetin in COVID-19 treatment. Journal of Inflammation 18(3):1-9 https://doi.org/10.1186/s12950-021-00268-6
  22. Sharma VK, Prateeksha, Singh SP, Singh BN, Rao CV, Barik SK (2022) Nanocurcumin Potently Inhibits SARS-CoV-2 Spike Protein-Induced Cytokine Storm by Deactivation of MAPK/NF-κB Signaling in Epithelial Cells. ACS Appl Bio Mater 5(2):483-491. https://doi.org/10.1021/acsabm.1c00874
  23. Su CM, Wang L, Yoo D (2021) Activation of NF-κB and induction of proinflammatory cytokine expressions mediated by ORF7a protein of SARS-CoV-2. scientific reports 11:13464. https://doi.org/10.1038/s41598-021-92941-2
  24. Tang J, Diao P, Shu X, Li L, Xiong L (2019) Quercetin and Quercitrin Attenuates the Inflammatory Response and Oxidative Stress in LPS-Induced RAW264.7 Cells: In Vitro Assessment and a Theoretical Model. BioMed Research International 2019:7039802. https://doi.org/10.1155/2019/7039802
  25. Tasinov O, Dincheva I, Badjakov I, Kiselova-Kaneva Y, Galunska B, Nogueiras R, Ivanova D (2021) Phytochemical Composition, Anti-Inflammatory and ER Stress-Reducing Potential of Sambucus ebulus L. Fruit Extract Plants (Basel) 10(11):2446. doi: 10.3390/plants10112446
  26. Tay M, Poh C, Renia L, MacAry P, Ng L (2020) The trinity of COVID-19: Immunity, inflammation and intervention. Nature Reviews Immunology 20:363-374 https://doi.org/10.1038/s41577-020-0311-8
  27. Vijeesh V, Vysakh A, Jisha N, Latha MS (2022) Malic Acid Attenuates Potassium Oxonate Induced Gouty Inflammation in Wistar Rat. Biointerface Research in Applied Chemistry 12(2):1682-1691
  28. Wu YR, Choi HJ, Kang YG, Kim JK, Shin JW (2017) In vitro study on anti-inflammatory effects of epigallocatechin-3-gallateloaded nano- and microscale particles. International Journal of Nanomedicine 2017:7007-7013. DOI https://doi.org/10.2147/IJN.S146296
  29. Ye Q, Wang B, Mao J (2020) The pathogenesis and treatment of the 'cytokine storm' in COVID-19. Journal of Infection 80: 607-613 https://doi.org/10.1016/j.jinf.2020.03.037
  30. Zabetakis I, Lordan R, Tsoupras CNA (2020) COVID-19: The Inflammation Link and the Role of Nutrition in Potential Mitigation. Nutrients 12(1466). doi:10.3390/nu1205146
  31. Zanatta L, Rosso A, Folador P, Figueiredo MSRB, Pizzolatti MG, Leite LD, Silva FRMB (2008) Insulinomimetic effect of kaempferol 3-neohesperidoside on the rat soleus muscle. J Nat Prod 71(4):532-535 https://doi.org/10.1021/np070358+