• Title/Summary/Keyword: sediment capacity

Search Result 166, Processing Time 0.024 seconds

A study on the sediment yields and raising of the spillway crest for the reservoir capacity enlargement (저수지 유역의 토사 유입 및 여수토 숭상 효과 조사)

  • Nam, Myoung-Hee;Suh, Seung-Duk
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.324-329
    • /
    • 2001
  • Sediment yields from the reservoir watershed areas and raising of the spillway crest for the agricultural reservoir capacity enlargement were investigated and analysed through the 21 pilot reservoirs, have irrigated areas 200has. and over in the Kyoungpook province. In these studies, (1), the correlation analysis between various watershed characteristics and annual specific sediment yields were derived and (2), the excess effective reservoir capacity of the over 0.5m above the spillway crest could be estimated. In brief, catchment area should strongly be correlated with the annual specific sediment yields (R=0.90), the other side, average slope of the main stream is less than catchment area. The excess effective capacity of reservoir enlargement by the raising of spillway crest at 0.5m-height was resulted 12.1% of increasing capacity compare with the original reservoir capacity.

  • PDF

Estimation of Decomposition Capacity for Organic Matter in Tidal Flat Sediments at Saemankeum Area (새만금지역 하구갯벌의 유기물 분해능력 평가)

  • Jong-Gu Kim;Sun-Jae You
    • Journal of Environmental Science International
    • /
    • v.10 no.5
    • /
    • pp.315-321
    • /
    • 2001
  • This study was conducted to estimate the decomposition capacity for organic matter by microbe of tidal flat sediments (Hajae, Dongjin and Mankyung). The decomposition rate constants (K') have been determined by Thomas slope method and compared with the values of each tidal flats. The decomposition rates of organic matter by microbe were initially very slow, but at the end of 12 hours, very sharply increased. The values of decomposition rate constant for Dongjin, Mankyung and Hajae tidal flat sediment were 1.364$day^{-1}$/, 1.080d$day^{-1}$ and 0.735$day^{-1}$, respectively. The decomposition rate constant of Dongjin tidal flat sediment which affected by livestock wastewater was higher than others. The decomposition quantity (mg/g/day) of organic matter by microbe of tidal flat sediments was 0.4mg/g/day for Dongjin, 0.36mg/g/day for Mankyung and 0.36mg/g/day for Hajae. The average of decomposition quantity was 0.37mg/g/day. To calculate purification capacity (kg/ha) of organic matter by microbe, we applied to two assumption ; 1) biological action by microbe is occur within 0.1cm under surface 2) specific gravity of sediment are 2.5g/$\textrm{cm}^2$. The purification capacity of organic matter by microbe of tidal flat sediment was calculated to 9.25kg/ha. The relationships between decomposition rate constant (K') and ignition loss (I. L), chemical oxygen demand by sediment (CO $D_{sed}$), total carbon(TC), silt and clay as index of organic matter were a high positive($R^2$=0.97~1.00).

  • PDF

Study on Sedimentation in Reservoir (저수지의 퇴사에 관한 연구)

  • 류희정;김치원
    • Water for future
    • /
    • v.9 no.2
    • /
    • pp.67-75
    • /
    • 1976
  • With 9 existng reservoirs selected in the Sab-Gyo River Basin, the sedimentation of the reservoirs has been calculated by comparing the present capacity with the original value, which revealed its reduced reservoirs capacity. The reservoirs has a total drainage area of 6,792 ha, with a total capacity of 1,204.09 ha-m, and are short of water supply due to reduction of reservoirs capacity. Annual sedimention in the reservcire is relation to the drainage area, the mean of annual rain fall, and the slop of drainage area. The results of obtained from the investigation are summarized as follow; (1) A sediment deposition rate is very high, being about $9.19{m}^3/ha$ of drainage area, and resulting in the average decrease of reservoir capacity by 19.1%. This high rate of deposition could be mainly attributed to the serve denvdation of forests due to disor derly cuttings of tree. (2) An average unit storage of 415.8mm as the time of initial construation is decreesed to 315.59mm at present, as resultting, we could'nt supply water at 566.24ha. (3) A sediment deposition rate as a relation to the capacity of unit drainage area is as follow; $Qs=1.43 (c/a)^{0.531}$ (4) A sediment deposition rate as a relation to the mean of annval rainfall is as follow; $Qs=672.61 p^{0.024}$ (5) A sediment deposition rate as a relation to the mean slop of drainage area is follow; $Qs=267.21 S^{0.597}$

  • PDF

A Study on Sediment Deposite in Reservoir (저유수량의 소실률 조사연구)

  • 엄태영
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.10 no.1
    • /
    • pp.1413-1419
    • /
    • 1968
  • Yochon reservoir was consturcted with an original storage capacity of 202.7 chung-meters. This reservoir receives the water from watershed area of 933.0 chungbo and has irrigated area of 478.0 chungbo. In 1967 a detailed capacity survey of this reservoir was carried out by a new depth-recorder under the scheme of reservoir sedimentation of Agricultural Engineering Research Center. Significant findings are 1. The capacity of the reservoir for the water storage has been reduced by 8.9%(18.066 chung-meters out of the 202.7 chung-meters) since its construction, a period of just 39.0 years. 2. The sediment accumulation in the reservoir represents an average annual soil loss of 0.496mm depth(0.463 chung-meters) of soil from the watershed area of 933.0 chungbo. Eventually the capacity of the reservoir for the water storage will be reducing by about 25%(50.7 chung-meters out of the 202.7 chung-meters)in one hundred years since its construction. We have to set up controlling projects for those reservoir protections from the sediment, soil loss, and other failures. The depth recorder is very useful, convenient, and accurate machine for surveys of reservoir capacity and other river surveys.

  • PDF

Analysis and Estimation of Reservoir Sedimentation Using Remote Sensing and GIS

  • Sungmin Cho
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.4
    • /
    • pp.199-204
    • /
    • 2023
  • Periodic assessment of reservoir capacity is essential for better water resources management and planning for the future water use. Reservoirs and water storage structures raised on the rivers are subjected to sedimentation and he sedimentation is caused by deposition of eroded sediment particles carried by the streams. Knowledge of reservoir sedimentation is important to estimate avaliable storage capacity for optimum reservoir operation and scheduling water release. In recent years, remote sensing and GIS techniques have emerged as an important tool in carrying out reservoir capacity analysis and water management. The reduction in storage capacity as compared to the original capacity at the time of reservoir impounding is indicative of sediment deposition. In this study, the application of GIS and remote sensing techniques were applied to assess the sediment deposition, losses in the reservoir storage and the revised cumulative capacity. Satellite images covering Pyodongdong reservoir were analyzed using Erdas Imagine and ArcGIS softwares.Cumulative capacities at different levels were also calculated and we estimated that the revised live storage was 84.2Mft3 in 2021 and 64.3Mft3 in 2022 while the original capacity was 22.8 and 53.6Mft3 in 2021 and 2022.

Comparative Evaluation of Muddy Water Occurrence Possibility in Dam Reservoir Using GIS (GIS를 이용한 댐 저수지의 흙탕물 발생 가능성 비교 평가)

  • Lee, Geun-Sang;Choi, Yun-Woong;Park, Jin-Hyeog
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.14 no.1
    • /
    • pp.94-106
    • /
    • 2011
  • The muddy water occurrence possibility of reservoir were analyzed by considering GIS based soil erosion model, sediment delivery ratio and effective reservoir capacity. For the purpose, the weakness factors for the establishment of countermeasures of basin were analyzed by evaluating input factors of RUSLE model based on spatial data such as DEM, soil map, landcover map and so on. The potential of soil erosion was estimated considering highland upland. The sediment yields of Chungju-Dam and Soyanggang-Dam showed the highest result in sediment yield using sediment delivery ratio with considering basin area. The sediment concentration of Imha-Dam and Chungju-Dam showed the highest value as 0.791 $kg/m^3/yr$ and 0.526 $kg/m^3/yr$ respectively in sediment concentration with considering effective reservoir capacity. Especially, sediment yield of Imha-Dam was about 2.36 times lower than Soyanggang-Dam, but the sediment concentration was 1.90 times higher preferably, because the effective reservoir capacity of Imha-Dam was about 4.48 times lower. This study calculated sediment concentration using the 10 years mean rainfall event and could consider the aspects of soil, terrain, landcover, cultivation condition and effective reservoir capacity of each basin effectively through the results. Therefore, these quantitative sediment concentration data could be used to estimate the potential of high density turbid water for reservoir and applied with effective tools for the management of reservoir.

A Study for Sedimentation in Reservoir -on district of Chin Young- (저수지의 퇴사에 관한 연구 -진양지구를 중심으로-)

  • 류시창;민병향
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.17 no.3
    • /
    • pp.3840-3847
    • /
    • 1975
  • With 30 excisting reservoirs in the Chin-Young area, the Sedimentation of the reservoirs has been calculated by comparing the present capacity with the original value, which revealed its reduced reservoir capacity. The reservoirs has a total drainage area of 3l4l ha, with a total capacity of 43.23 ha-m, and are short of water supply due to reduction of reservoir capacity, Annual sedimentation in the reservoir is relation to the drainage area, the mean of annual rainfall, and the slop of drainage area. The results of obtained from the investigation are summarized as follows: (1) A Sediment deposition rate is high, being about 7.03㎥/ha of drainage area, and resulting in the overage decrease of reservoir capacity by 16.1%. This high rate of deposition coule be mainly attributed to the serve denudation of forests due to disorderly cuttings of tree. (2) An average unit storageof 116mm as the time of initial construction is decreased to 95.6mm at present. This phenomena cause a greater storage of irrigation water, sinceit was assumed that original storage quantity itself was already in short. (3) A sediment deposition rate as a relation to the capacity of unit drainge area is as follow: Qs=1.27(C/A)0.6 and standard deviation is 185.5㎥/$\textrm{km}^2$/year. (4) A sediment deposition rate as a relation to the mean of annual rainfall is as follow: Qs=21.9p10.5 and the standard deviation is 364.8㎥/$\textrm{km}^2$/year. (5) A sediment deposition rate as a relation to the mean slop of drainage area is follow: Qs=39.6S0.75 and the standard deviation is 190.2㎥/$\textrm{km}^2$/year (6) Asediment deposition rate as a relation to the drainage area, mean of rainfall, mean of slope of drainage area is: Log Qs=0.197+0.108LogA-6.72LogP+2.20LogS and the standard deviation is 92.4㎥/$\textrm{km}^2$/year

  • PDF

Studies on t Sediment Deposit and Storage Capacity of the Honam Province (호남지방의 저수지의 매몰상황과 저수량에 관한 조사연구)

  • 이창구
    • Journal of the Korean Professional Engineers Association
    • /
    • v.3 no.10
    • /
    • pp.7-17
    • /
    • 1970
  • Fourteen reservoirs maintained by the local land improvement associations in the province of Chullabuk-Do and 20 reservoirs maintained by those in the province of Chullanam-Do, were surveyed in connection with a correction between storage capacity and sediment deposit. In addition to this survey, 3347 of small scale reservoirs, that lie scattered around in the above mentioned two provinces were investigated by using existing records pertaining to storage capacity in the office of City and Country, respectively. According to this inrestigation. the following conclusions are derived. 1. A sediment deposition rate is high, being about 10.63m$^3$/ha of drainage area, and resulting in the average decrease of storage capacity by 27.5%. This high rate of deposition could be mainly attributed to the severe denudation of forests due to disorderly cuttings of trees. Especially, in small scale reservoirs, an original average design storage depth of 197mm in irrigation water depth is decreased to about 140mm. 2. An average unit storage depth of 325.6mm as the time of initial construction is decreased to 226mm at present. This phenomena causes a greater shortage of gation water, since it was assumed that original storage quantity itself was already in short.

  • PDF

Influence of Sediment on the Chemical Speciation of Copper and Cadmium in an Aquatic System (저질이 천연수중 구리와 카드뮴의 화학종 분포에 미치는 영향)

  • 이군자;박청길
    • Journal of Environmental Science International
    • /
    • v.1 no.2
    • /
    • pp.59-69
    • /
    • 1992
  • In order to predict the distribution of chemical species of copper and cadmium in water, conditional stability constant and complexation capacity between copper or cadmium and natural aquatic sediment have been determined in a shallow lake in Haman, Kyungnam. Kinetic parameters were calculated by Langmuir isotherm equation. Conditional stability constant was log $K_{cuSed}=4.78 and log K_{cdSed}=4.45$. Complexation capacity was $1.70{\times}10^{-4}$moles/g for copper and $5.54{\times}10^{-5}$moles/g for cadmium. Accuracy of experimental values of conditional stability constant was checked by comparing the calculated concentration of the metals with the measured one. Relatively good agreement between these values was obtained. Relative errors were 8.9% for copper and 6.5% for cadmium. Data of the measured conditional stability constant were put into data base of MINEQL computer program, and concentration of various chemical species of copper and cadmium in a model aquatic system was calculated. Aquatic sediment was associated with copper at the concentration of $10^{-5M}(0.059g/\ell)$10-5M(0.059g/l) and with cadmium at the concentration of $10^{-6M}(0.018g/\ell)$, and it significantly influenced on the distribution of chemical species of the metals. This result showed that prediction of chemical species of the heavy metals in an aquatic system should be taken into account the influence of the sediment.

  • PDF

NUMERICAL MODELING OF NON-CAPACITY MODEL FOR SEDIMENT TRANSPORT BY CENTRAL UPWIND SCHEME

  • S. JELTI;A. CHARHABIL;J. EL GHORDAF
    • Journal of applied mathematics & informatics
    • /
    • v.41 no.1
    • /
    • pp.181-192
    • /
    • 2023
  • This work deals with the numerical modeling of dam-break flow over erodible bed. The mathematical model consists of the shallow water equations, the transport diffusion and the bed morphology change equations. The system is solved by central upwind scheme. The obtained results of the resolution of dam-beak problem is presented in order to show the performance of the numerical scheme. Also a comparison of central upwind and Roe schemes is presented.