• Title/Summary/Keyword: secretory protein

Search Result 244, Processing Time 0.033 seconds

Moxifloxacin Ameliorates Oleic Acid-induced Acute Lung Injury by Modulation of Neutrophilic Oxidative Stress in Rats (Moxifloxacin의 Secretory $PLA_2$억제가 올레인 산으로 유도된 호중구성 급성 폐손상에 미치는 영향)

  • Kim, Byung-Yong;Lee, Young-Man
    • Tuberculosis and Respiratory Diseases
    • /
    • v.68 no.6
    • /
    • pp.334-344
    • /
    • 2010
  • Background: Based on the known immunoregulatory functions of moxifloxacin on phagocytes, the therapeutic effect of moxifloxacin on oleic acid (OA)-induced acute lung injury (ALI) was investigated. Methods: Moxifloxacin (10 mg/kg) was given to male Sprague-Dawley rats that had been given oleic acid (OA, $30{\mu}L$) intravenously. Five hours after OA injection, parameters demonstrating ALI were assessed to measure the effects of moxifloxacin on acute lung injury. Results: The pathological findings of OA-induced ALI's was diminished by moxifloxacin. Through ultrastructural and $CeCl_3$ EM histochemistry, moxifloxacin was confirmed to be effective in decreasing oxidative stress in the lung as well. Indices of ALI, such as lung weight/body weight ratio, protein content in bronchoalveolar lavage fluid, and lung myeloperoxidase were decreased by moxifloxacin. In diaminobenzidine immunohistochemistry, fluorescent immunohistochemistry, and Western blotting of the lung, moxifloxacin had decreased the enhanced expression of secretory phospholipase $A_2$ ($sPLA_2$) by OA. Conclusion: We concluded that moxifloxacin was effective in lessening acute inflammatory pulmonary edema caused by OA, by inhibiting the neutrophilic respiratory burst, which was initiated by the activation of $sPLA_2$.

AN INVESTIGATION OF IMMUNIZATION AGAINST SOMATOSTATIN BY MEASURING ANTIBODY TITRES, SOMATOSTATIN AND SOMATOTROPIN PROFILES IN GILTS

  • Du, Z.L.;Hacker, R.R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.6 no.2
    • /
    • pp.211-218
    • /
    • 1993
  • The effect of active immunization against porcine somatostatin (SRIF-14) on somatostation and somatotropin secretion profile in 18 gilts was investigated. Gilts were assigned to the following treatments: control (sham injection, n = 6); bovine serum albumin (BSA) (injection of BSA with bacterial protein adjuvant, n = 6); SRIF (injection of BSA-SRIF-14 conjugate with bacterial protein adjuvant n = 6). Serum SRIF and pST were assayed from the blood samples taken on day 7 after the last immunization injection. Anti-SRIF antibody titres were assayed in weekly samples two weeks after the initial immunization to one week after the last immunization. Results revealed that the immunization protocol used in the present investigation failed to produce antibodies capable of neutralizing endogenous somatostatin. In addition, the porcine somatotropin assay revealed no significant differences in baseline pST concentration, mean peak amplitude and number of peaks during a 24 h secretory period among SRIF, BSA and control treatment. There were also no differences in SRIF baseline concentration, peak amplitude, and number of peaks during a 24 h secretory period among any of the three treatments. Circulating concentrations of pST and pSRIF were highly correlated (r = -0.09). Furthermore, anti-SRIF antibody titre was not detected in the serum of the gilts actively immunized against SRIF. These data, collectively, suggest that the protocol employed in the present investigation for active immunization against SRIF is not an effective method for changing SRIF and pST secretion profiles of the gilt and thus to enhance performance.

Beyond the mouth: Uncovering non-secretory multiple myeloma through oral symptoms

  • Pedro Henrique Chaves Isaias;Fabio Wildson Gurgel Costa;Pedro Henrique Goncalves Holanda Amorim;Raul Anderson Domingues Alves da Silva;Fabrício Bitu Sousa;Karuza Maria Alves Pereira;Ana Paula Negreiros Nunes Alves;Mario Rogério Lima Mota
    • Imaging Science in Dentistry
    • /
    • v.54 no.2
    • /
    • pp.211-220
    • /
    • 2024
  • Non-secretory multiple myeloma (NSMM) is a rare cancer of plasma cells characterized by the absence of detectable monoclonal M protein in the blood or urine. A 57-year-old woman presented with mandibular pain but without intraoral swelling. Imaging studies revealed multiple osteolytic lesions in her mandible and pronounced root resorption of the left mandibular second molar. Biopsy results showed atypical plasmacytoid cells positive for anti-kappa, CD138, MUM1, and CD79a antibodies, but negative for anti-lambda and CD20. These results were indicative of a malignant plasma cell neoplasm. No abnormalities were revealed by free light chain assay or by serum or urine protein electrophoresis, leading to a diagnosis of NSMM. The patient began chemotherapy in conjunction with bisphosphonate therapy and achieved remission following treatment. This case underscores the critical role of dentists in the early detection and prevention of NSMM complications, as the disease can initially present in the oral cavity.

D-galactose induces astrocytic aging and contributes to astrocytoma progression and chemoresistance via cellular senescence

  • Jingang Hou;Yeejin Yun;Jianjie Xue;Mengqi Sun;Sunchang Kim
    • Molecular Medicine Reports
    • /
    • v.20 no.5
    • /
    • pp.4111-4118
    • /
    • 2019
  • The administration of D-galactose triggers brain aging by poorly understood mechanisms. It is generally recognized that D-galactose induces oxidative stress or affects protein modifications via receptors for advanced glycated end products in a variety of species. In the present study, we aimed to investigate the involvement of astrocytes in D-galactose-induced brain aging in vitro. We found that D-galactose treatment significantly suppressed cell viability and induced cellular senescence. In addition, as of the accumulation of senescent cells, we proposed that the senescence-associated secretory phenotype (SASP) can stimulate age-related pathologies and chemoresistance in brain. Consistently, senescent astrocytic CRT cells induced by D-galactose exhibited increases in the levels of IL-6 and IL-8 via NF-κB activation, which are major SASP components and inflammatory cytokines. Conditioned medium prepared from senescent astrocytic CRT cells significantly promoted the viability of brain tumor cells (U373-MG and N2a). Importantly, conditioned medium greatly suppressed the cytotoxicity of U373-MG cells induced by temozolomide, and reduced the protein expression levels of neuron marker neuron-specific class III β-tubulin, but markedly increased the levels of c-Myc in N2a cells. Thus, our findings demonstrated that D-galactose treatment might mimic brain aging, and that D-galactose could contribute to brain inflammation and tumor progression through inducing the accumulation of senescent-secretory astrocytes.

Comparative Study on the Salivary Gland between Two Species (Achatina fulica and Incilaria fruhstorferi) of the Snails in Stylommatophora ( Mollusca, Gastropoda ) (병안목 달팽이류 두 종간 (Achatina fulica and Incilaria fruhstorferi)의 타액선에 관한 비교 연구)

  • 한종민;장남섭
    • The Korean Journal of Malacology
    • /
    • v.12 no.2
    • /
    • pp.109-121
    • /
    • 1996
  • Histochemical experiment was carry out respectively to confirm the properties of the salis (Achatina fulica and Incilaria fruhstorferi). SDS-PAGE was carried out to compare and invertigate the distribution aspects of protein patterns between the two species. Five types(A, B, F, H and I)of gland cells with four neutral mucopolysaccharide cells and one acid mucopolysaccharide cells and one acid mucopolysaccharide cell were observed in acinous of Achatina fulica, while six types were observed in acinous of Incilaria fruhstorferi: ond acid mucopolysaccharide cell(type-A) and four neutral mucopolysaccharide cells(type-B, C, D and F) and one cell that acid mucopolysaccharide is only mimbrane that surrounded granule(type-E). The results are follows:The thpe-A fland cell is commonly observed between the two species. The type-A gland cell in Achatina fulica possesses a nucleus with a developed heterdchromatin, and the cytoplasm was filled with round granules. The granules were surrounded with an uncertain boundary mimbrane and confirmed with neutral mucopolysaccharides, but is confirmed acid mucopolysaccharide in Incilaria fruhstorferi.The type-B gland cell is obwerved in the two species, too. The type-B gland cell in Achatina fulica was round shaped, and included an evenly alrge nucleus. The uncleoplasm included granules that were confirmed in the neutral mucopolysaccharides of the two species. The type-C and D gland cells exist only in Incilaria fruhstorferi, nucleoplasm was well developed heterochromatins. The type-E gland cell appears in the acinous surrounded the salivary gland of Incilaria fruhstorferi. Thdse granules appear irregular irregular shape and size and the cytoplasm is formed in alveolar. The type-F gland cells are commonly observed in the salivary glands of the two species. They are similar with the type-B gland cell, but the granular shape is comparatively small and irregular, and possess the neutral mucos granules. The type-H gland cells are mainly seen in only Achatina, and in nucleus is a well developed heterochromatin. The cytoplasm is filled with round small granules with acid mucopolysaccharide for alcianophilia observed. The type-I cell was small cell with an irregular shape and only observed in the gland cells of Achatina fulica. The heterochromatins were developed in the nucleus and the granules are not observed in cytoplasm.Secretory ducts of saliva are composed of the interlobular duct and interlobar secretory duct. In Achatina fulica the interlobular duct consists of a simple cuboidal epithelium, while the endothelium of intralobar secretory duct of Incilaria fruhstorferi consists of a simple squamous epithelium and in the cytoplasm is filled with granules(type-G secretory cell). A SDS-PAGE was carried out to confirm that the protein band pattern consist of salivary gland. In conclusions, five more bands in Achatina fulica and three bands in Incilaria fruhstorferi were confirmed in MW<29 kDa. one main band coincides comparatively with both and is between 29-45 kDa. There are four main bands in Achatina fulica and two main bands in Incilaria fruhstorferi between 45-66.5 kDa respectively. The bands in Achatina fulica seem more complex than in incilaria fruhstorferi.

  • PDF

Cloning and Expression of a Thermostable ${\alpha}$-Galactosidase from the Thermophilic Fungus Talaromyces emersonii in the Methylotrophic Yeast Pichia pastoris

  • Simila, Janika;Gernig, Anita;Murray, Patrick;Fernandes, Sara;Tuohy, Maria G.
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.12
    • /
    • pp.1653-1663
    • /
    • 2010
  • The first gene (${\alpha}$-gal1) encoding an extracellular ${\alpha}$-Dgalactosidase from the thermophilic fungus Talaromyces emersonii was cloned and characterized. The ${\alpha}$-gal1 gene consisted of an open reading frame of 1,792 base pairs interrupted by six introns that encoded a mature protein of 452 amino acids, including a 24 amino acid secretory signal sequence. The translated protein had highest identity with other fungal ${\alpha}$-galactosidases belonging to glycosyl hydrolase family 27. The ${\alpha}$-gal1 gene was overexpressed as a secretory protein with an N-terminal histidine tag in the methylotrophic yeast Pichia pastoris. Recombinant ${\alpha}$-Gal1 was secreted into the culture medium as a monomeric glycoprotein with a maximal yield of 10.75 mg/l and purified to homogeneity using Hisbinding nickel-agarose affinity chromatography. The purified enzyme was maximally active at $70^{\circ}C$, pH 4.5, and lost no activity over 10 days at $50^{\circ}C$. ${\alpha}$-Gal1 followed Michaelis-Menten kinetics ($V_{max}\;of\;240.3{\mu}M/min/mg,\;K_m\;of\;0.294 mM$) and was inhibited competitively by galactose ($K_m{^{obs}}$ of 0.57 mM, $K_i$ of 2.77 mM). The recombinant T. emersonii ${\alpha}$-galactosidase displayed broad substrate preference, being active on both oligo- and polymeric substrates, yet had strict specificity for the ${\alpha}$-galactosidic linkage. Owing to its substrate preference and noteworthy stability, ${\alpha}$-Gal1 is of particular interest for possible biotechnological applications involving the processing of plant materials.

Downregulation of PyHRG1, encoding a novel secretory protein in the red alga Pyropia yezoensis, enhances heat tolerance

  • Han, Narae;Wi, Jiwoong;Im, Sungoh;Lim, Ka-Min;Lee, Hun-Dong;Jeong, Won-Joong;Kim, Geun-Joong;Kim, Chan Song;Park, Eun-Jeong;Hwang, Mi Sook;Choi, Dong-Woog
    • ALGAE
    • /
    • v.36 no.3
    • /
    • pp.207-217
    • /
    • 2021
  • An increase in seawater temperature owing to global warming is expected to substantially limit the growth of marine algae, including Pyropia yezoensis, a commercially valuable red alga. To improve our knowledge of the genes involved in the acquisition of heat tolerance in P. yezoensis, transcriptomes sequences were obtained from both the wild-type SG104 P. yezoensis and heat-tolerant mutant Gy500. We selected 1,251 differentially expressed genes that were up- or downregulated in response to the heat stress condition and in the heat-tolerant mutant Gy500, based on fragment per million reads expression values. Among them, PyHRG1 was downregulated under heat stress in SG104 and expressed at a low level in Gy500. PyHRG1 encodes a secretory protein of 26.5 kDa. PyHRG1 shows no significant sequence homology with any known genes deposited in public databases to date. However, PyHRG1 homologs were found in other red algae, including other Pyropia species. When PyHRG1 was introduced into the single-cell green alga Chlamydomonas reinhardtii, transformed cells overexpressing PyHRG1 showed severely retarded growth. These results demonstrate that PyHRG1 encodes a novel red algae-specific protein and plays a role in heat tolerance in algae. The transcriptome sequences obtained in this study, which include PyHRG1, will facilitate future studies to understand the molecular mechanisms involved in heat tolerance in red algae.

Alteration of cellular events in tooth development by chemical chaperon, Tauroursodeoxycholic acid treatment

  • Lee, Eui-Seon;Aryal, Yam Prasad;Kim, Tae-Young;Pokharel, Elina;Kim, Harim;Sung, Shijin;Sohn, Wern-Joo;Lee, Youngkyun;An, Chang-Hyeon;Kim, Jae-Young
    • International Journal of Oral Biology
    • /
    • v.45 no.4
    • /
    • pp.190-196
    • /
    • 2020
  • Several factors, including genetic and environmental insults, impede protein folding and secretion in the endoplasmic reticulum (ER). Accumulation of unfolded or mis-folded protein in the ER manifests as ER stress. To cope with this morbid condition of the ER, recent data has suggested that the intracellular event of an unfolded protein response plays a critical role in managing the secretory load and maintaining proteostasis in the ER. Tauroursodeoxycholic acid (TUDCA) is a chemical chaperone and hydrophilic bile acid that is known to inhibit apoptosis by attenuating ER stress. Numerous studies have revealed that TUDCA affects hepatic diseases, obesity, and inflammatory illnesses. Recently, molecular regulation of ER stress in tooth development, especially during the secretory stage, has been studied. Therefore, in this study, we examined the developmental role of ER stress regulation in tooth morphogenesis using in vitro organ cultivation methods with a chemical chaperone treatment, TUDCA. Altered cellular events including proliferation, apoptosis, and dentinogenesis were examined using immunostaining and terminal deoxynucleotidyl transferase dUTP nick end labeling assay. In addition, altered localization patterns of the formation of hard tissue matrices related to molecules, including amelogenin and nestin, were examined to assess their morphological changes. Based on our findings, modulating the role of the chemical chaperone TUDCA in tooth morphogenesis, especially through the modulation of cellular proliferation and apoptosis, could be applied as a supporting data for tooth regeneration for future studies.

Hypothetical protein predicted to be tumor suppressor: a protein functional analysis

  • Kader, Md. Abdul;Ahammed, Akash;Khan, Md. Sharif;Ashik, Sheikh Abdullah Al;Islam, Md. Shariful;Hossain, Mohammad Uzzal
    • Genomics & Informatics
    • /
    • v.20 no.1
    • /
    • pp.6.1-6.15
    • /
    • 2022
  • Litorilituus sediminis is a Gram-negative, aerobic, novel bacterium under the family of Colwelliaceae, has a stunning hypothetical protein containing domain called von Hippel-Lindau that has significant tumor suppressor activity. Therefore, this study was designed to elucidate the structure and function of the biologically important hypothetical protein EMK97_00595 (QBG34344.1) using several bioinformatics tools. The functional annotation exposed that the hypothetical protein is an extracellular secretory soluble signal peptide and contains the von Hippel-Lindau (VHL; VHL beta) domain that has a significant role in tumor suppression. This domain is conserved throughout evolution, as its homologs are available in various types of the organism like mammals, insects, and nematode. The gene product of VHL has a critical regulatory activity in the ubiquitous oxygen-sensing pathway. This domain has a significant role in inhibiting cell proliferation, angiogenesis progression, kidney cancer, breast cancer, and colon cancer. At last, the current study depicts that the annotated hypothetical protein is linked with tumor suppressor activity which might be of great interest to future research in the higher organism.

The Golgi complex: a hub of the secretory pathway

  • Park, Kunyou;Ju, Sungeun;Kim, Nari;Park, Seung-Yeol
    • BMB Reports
    • /
    • v.54 no.5
    • /
    • pp.246-252
    • /
    • 2021
  • The Golgi complex plays a central role in protein secretion by regulating cargo sorting and trafficking. As these processes are of functional importance to cell polarity, motility, growth, and division, there is considerable interest in achieving a comprehensive understanding of Golgi complex biology. However, the unique stack structure of this organelle has been a major hurdle to our understanding of how proteins are secreted through the Golgi apparatus. Herein, we summarize available relevant research to gain an understanding of protein secretion via the Golgi complex. This includes the molecular mechanisms of intra-Golgi trafficking and cargo export in the trans-Golgi network. Moreover, we review recent insights on signaling pathways regulated by the Golgi complex and their physiological significance.