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The Golgi complex plays a central role in protein secretion by 
regulating cargo sorting and trafficking. As these processes are 
of functional importance to cell polarity, motility, growth, and 
division, there is considerable interest in achieving a com-
prehensive understanding of Golgi complex biology. However, 
the unique stack structure of this organelle has been a major 
hurdle to our understanding of how proteins are secreted 
through the Golgi apparatus. Herein, we summarize available 
relevant research to gain an understanding of protein secretion 
via the Golgi complex. This includes the molecular mechanisms 
of intra-Golgi trafficking and cargo export in the trans-Golgi 
network. Moreover, we review recent insights on signaling 
pathways regulated by the Golgi complex and their physiological 
significance. [BMB Reports 2021; 54(5): 246-252]

INTRODUCTION

The intracellular transport system shuttles cargo (e.g., proteins 
and lipids) between organelles via transport carriers, including 
vesicles and tubules. Fundamentally, cargo is sorted into transport 
carriers generated from the membrane of donor organelles (1, 
2). The cargo-containing carriers are then translocated to acceptor 
organelles along the microtubules (3). Upon synthesis, cargoes, 
which pass quality control in the endoplasmic reticulum (ER), 
are transported to the Golgi complex in COPII vesicles (4, 5). 
Thereafter, protein cargoes undergo post-translational modifi-
cations as they pass through the Golgi complex. Functional 
alterations in the Golgi complex have been described in different 
conditions, including various cancers, immunodeficiencies, 
and neurodegenerative diseases (6). Further, the question of 
how this organelle is regulated in pathological conditions has 
attracted considerable attention (7, 8). However, investigating 
the Golgi complex has been challenging due to technical 
limitations arising from the functional complexity and dynamic 

morphological changes of this organelle. In this short review, 
we summarize advances in the field of membrane biology 
from the past years and introduce the current issues in the field 
to obtain a better understanding of the role of the Golgi 
complex in the secretory pathway of cells. 

COORDINATED REGULATION OF BIDIRECTIONAL 
TRANSPORT WITHIN THE GOLGI COMPLEX

Secretory proteins undergo various post-translational modifi-
cations, including glycosylation, during their passage through 
the Golgi complex. How proteins are transported through this 
organelle has remained elusive for many years. Early studies 
identified the coat protein I (COPI) complex, which acts as a 
major coat component of vesicles formed in the Golgi (9). 
Extensive research pursued understanding the role of COPI 
vesicles in the Golgi complex. Considering the Golgi stacks as 
static, it was initially thought that COPI-coated vesicles are 
responsible for the anterograde and retrograde transport of 
cargoes within the organelle (10). However, this model could 
not explain the sorting of large cargoes such as procollagen 
into COPI vesicles with a small diameter of approximately 50 
nm (11, 12). Subsequent studies revealed that procollagen is 
transported through the Golgi complex without leaving the 
cisternae (13, 14). Moreover, two independent research groups 
observed the change of cis-stack to trans-stack via live imaging 
in yeast (15, 16). These findings provided strong evidence for a 
possible mechanism through which stacks containing 
secretory cargoes move in the anterograde direction, referred 
to as the model of cisternal maturation (Fig. 1A). Given that 
COPI vesicles contain Golgi resident proteins, including 
mannosidase II and giantin (17), it was suggested that secretory 
cargo is transported through the Golgi complex in an anterograde 
direction via cisternal maturation, while the rearrangement of 
Golgi resident proteins is regulated by COPI vesicle-mediated 
retrograde transport.

COPI is a large protein complex consisting of seven subunits 
(, , ’, , , , and ) (18, 19). It is structurally similar to 
clathrin and the AP2 complex, having an inner coat (, , , ), 
which corresponds to the AP2 adaptor, and an outer coat (, 
’, ) corresponding to the clathrin heavy chain (20). Coat 
proteins carry out two major roles, namely cargo sorting and 
vesicle formation. With regard to cargo sorting, the COPI 
complex contains several cargo binding sites (21, 22). Structural 
examination revealed that KKxx and KxKxx motifs in the 
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Fig. 1. Three models of protein transport within the Golgi complex. (A) Cisternal maturation model. Secretory cargo is transported in an 
anterograde direction along with cisternae maturation from cis-face to trans-face of the Golgi complex. Golgi resident proteins are 
transported in retrograde through COPI vesicles. (B) Rapid partitioning model. The Golgi stacks are distributed into two sub-domains. One 
is glycerophospholipids containing processing domain (white), while the other domain contains glycosphingolipids (black). Transmembrane 
secretory protein (green) are concentrated at export domain, while Golgi-resident proteins (red) are excluded from export domain and concentrated
in processing domain. (C) Golgi tubule-mediated transport model. Each cisternae is connected by Golgi tubule which is regulated by the 
COPI complex. Golgi tubules are involve in the rapid bidirectional transport within the Golgi complex. 

cytoplasmic tail of retrograde cargo are inserted into the pores 
of the ’-COP subunit for binding (23). Cargo binding sites 
were additionally identified in the - and -subunits, suggest-
ing that cargoes bind to COPI subunits in different manners 
(24, 25). For instance, many Golgi resident proteins do not 
contain the canonical KKxx motif (26). In this case, cargoes are 
recognized by GOLPH3, which is a linker between Golgi- 
resident proteins and the COPI complex (27, 28). Indeed, 
various glycosyltransferases bind to GOLPH3 through a 
pentameric (F/L)-(L/I/V)-X-X-(R/K) motif for the COPI interaction 
(27, 28). 

The molecular mechanisms underlying the regulation of 
COPI vesicle formation are unclear. It was initially suggested 
that small GTPases ARF1 and COPI are sufficient to form COPI 
vesicles based on the observation that vesicles could be 
reconstituted using an in vitro reconstitution assay wherein an 
intact Golgi membrane was incubated with purified COPI and 
recombinant ARF1 loaded with GTPS (29). In this scenario, 
the COPI complex was recruited to the Golgi membrane upon 
activation of ARF1 (30). The GTPase-activating protein (GAP) 
for ARF1, ARFGAP1, then promoted the dissociation of COPI 
components from vesicles via GTP hydrolysis (29). However, 
given that the GAP acts as a coat component of vesicle formation 
in multiple transport pathways (31), various groups have 
questioned the role of ARFGAP1 in COPI vesicle formation 
(32, 33). By establishing a two-stage in vitro reconstitution 
system that separates the early (budding) and late (fission) 
stages of COPI vesicle formation, ARFGAP1 was found to be 
involved in the early stage, regulating cargo sorting (34). 
Additionally, ARFGAP1 bound to a highly curved membrane 
through the ALPS motif. Further, this binding induced the 
membrane curvature required for vesicle formation (32, 35, 
36). Taken together, these results indicated that ARFGAP1 acts 

as a coat component in COPI vesicle formation (36, 37). 
Through cryo-EM, recent studies found irregular cage structures 
of COPI vesicles which were reconstituted using a coatomer 
and ARF1 (38). Considering that vesicles coated with COPII 
and clathrin have a regular cage structure, COPI vesicles of 
different structures may be observed through the addition of 
missing coat components.

Although there are many advantages of the cisternal maturation 
model in explaining anterograde transport in the Golgi, it is 
still unclear why some cargoes are transported faster than 
others (39). As rapidly growing cells produce and secrete various 
molecules within a short period of time, understanding the 
molecular mechanisms underlying rapid secretion may be of 
great relevance to pathological conditions as well as normal 
physiology. Golgi stacks were found to be rapidly partitioned, 
providing different transport pathways for rapid secretion (Fig. 
1B) (40). It was also suggested that certain cargoes use a 
special transport carrier for rapid secretion. Historically, 
rapidly secreted cargoes (e.g., VSV-G and proinsulin) were 
originally observed in COPI-coated transport carriers (10). 
However, this was not further investigated as the COPI complex 
was thought to be involved in retrograde transport. This issue 
was recently revisited using electron microscopy (EM) 
tomography, in which Z-stack images of the Golgi complex 
obtained via EM were applied for 3D-reconstruction. A Golgi 
structure in which stacks are connected by tubules was observed 
(41). These tubules were highly likely to be considered as 
vesicles in previous studies as horizontal images of the two 
were similar (41, 42). Subsequent studies revealed that the 
COPI complex promoted the formation of Golgi tubules (Fig. 
1C). Mechanistically, after initial budding of the Golgi 
membrane induced by the COPI complex, the enzymatic 
activities of lysophosphatidic acid acyltransferase- (LPAAT) 
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Fig. 2. Cargo sorting and export regulated in the trans-Golgi network. Transport of cargoes to various destinations is regulated in the TGN. 
Many key factors have been identified. TGN export to endo-lysosome is regulated through Clathrin dependent and independent 
machineries. Mannose-6-phosphasphate receptor (M6PR) and Sortilin act as a cargo receptor in this pathway. In polarized cells, transport of 
apical and basolateral cargoes is regulated by multiple mechanisms that involve not only proteins, but also sugars.

and cytosolic phospholipase A2 (cPLA2) determined the 
fate of these buds in becoming vesicles or tubules (43). In 
particular, cPLA2 induced the elongation of COPI-coated 
buds to form tubules by providing lysophosphatidic acids with 
an inverted cone shape, which inhibit COPI vesicle fission 
(43). In this regard, rapid protein secretion was abolished by 
disrupting cPLA2, suggesting that the Golgi tubule is important 
for the rapid secretory pathway (43). Taken together, secretory 
proteins are transported through the Golgi complex by 
cisternal maturation (slow) and Golgi tubules (rapid) formed by 
the COPI complex, whereas rearrangement of Golgi resident 
proteins is regulated by retrograde transport via COPI vesicles.

How the same coat protein acts in the opposite direction 
during transport was recently revealed, as anterograde cargoes 
were found to bind to the COPI complex through a non- 
canonical basic sorting motif, distinct from retrograde cargo 
binding to the COPI subunit via the KKxx motif (44). This 
process is involved in the role of Rho GTPase CDC42 within 
the Golgi complex. Upon activation, CDC42 binds to the 
-subunit of the COPI complex through the KKxx motif at its 
C-terminus region, which causes the competitive inhibition of 
retrograde cargo binding to the COPI complex (25, 44). CDC42 
also promotes anterograde transport through its ability to exert 
membrane curvature, which induces the formation of Golgi 
tubules (44). In this case, however, CDC42 did not affect antero-
grade cargo sorting into the tubules. These findings raised 
questions regarding how the role of CDC42 in Golgi transport 
is regulated. One possible mechanism is that GTPases are 
modulated by their respective GEF/GAP. Of note, various 
GEFs and GAPs of the Rho GTPase have been found in the 
Golgi complex (45, 46). In addition to the general hypothesis 

presented above, upstream kinases can target GEF/GAP to 
regulate GTPases as studies on Vav proteins, which are 
prototypic GEFs for Rho GTPases, have shown (47). The SRC 
kinase is a likely upstream regulator of CDC42 based on the 
observation that protein secretion through the Golgi complex 
is inhibited by SRC disruption (48). Taken together, these 
considerations suggest the high possibility that SRC targets the 
GEF/GAP for Golgi CDC42 to modulate the latter’s role in 
transport. Studies on the circuit of SRC-GEF/GAP-Rho GTPase 
in Golgi transport are necessary in order to achieve a complete 
understanding of bidirectional transport within the organelle. 
Moreover, investigating the involvement of other Rho GTPases, 
such as Rac1 and RhoA, in the secretory pathway is another 
intriguing topic the elucidation of which will contribute to a 
more complete understanding of secretion. 

CARGO SORTING AND TRANSPORT IN THE 
TRANS-GOLGI NETWORK

When secretory proteins arrive at the trans-Golgi network 
(TGN), they must be properly sorted before being delivered to 
their final destinations (49). TGN export was previously 
considered a constitutive process (50). However, cumulative 
studies have revealed that this pathway is regulated (Fig. 2). In 
fact, polarized distribution of apical and basolateral proteins 
provides strong evidence for the regulation of transport in the 
TGN. Impaired sorting causes mislocalization of basolateral 
cargoes in the apical region (51). Basolateral proteins (e.g., 
Furin and LDLR) bind to the  subunit of the AP complex 
through a tyrosine-based motif (YXX) and a di-leucine motif 
([DE]XXXL[LI]), promoting cargo export in the TGN (52). 
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Fig. 3. Signaling transduction instigated by the Golgi complex. 
(Left) Palmitoylation of Ras obtained at the Golgi complex is 
required for membrane recruitment and activation of signaling 
pathways. Signaling pathway of N-Ras at the Golgi complex shows 
a sustained activity as compared to N-Ras signaling instigated from 
the plasma membrane. (Right) Retrograde COPI transport is regulated 
by KDELR-mediated PKA signaling pathway. Cargo export in TGN 
is regulated by SRC signaling pathway which is activated by KDELR.

Impaired sorting of basolateral proteins by disruption of AP-4  
subunit leads to mislocalization to the apical surface (49, 53). 
Cargo receptors also recognize ligands other than the peptide- 
based sorting motif. When apical-targeted proteins reach the 
TGN, the sugars in cargoes are recognized by lectins, which 
promotes rearrangement of apical cargoes on lipid rafts for the 
sorting process (54-56). The mannose-6-phosphate receptor 
(M6PR) also recognizes sugars on lysosomal enzymes (57). 
Upon cargo binding, the receptor binds to GGA and AP-1 to 
sort cargoes into clathrin-coated vesicles. Subsequently, low 
pH in the endosomal compartments induces the dissociation 
of cargoes from M6PR, which are then retrieved to the TGN 
(57). Notably, many proteins (e.g., insulin-like growth factor II 
(IGF II), retinoic acid, soluble enzymes, as well as lysosomal 
membrane proteins) are transported independently of M6PR 
(52). In this regard, an alternative mechanism regulated by 
sortilin and LIMP-2 was identified. Sortilin contains a VPS10 
domain on the lumen side. The cleavage of the N-terminal 
propeptide on this VPS10 domain regulates the sorting of 
lysosome targeting proteins such as cathepsin D and cathepsin 
H. Further, the cytoplasmic tail of sortilin binds to the GGA 
and AP complex for TGN export (58, 59). LIMP-2 is a key 
regulator of -glucocerebrosidase (GC) transport in the TGN 
(60). A heavily glycosylated coiled-coil domain of LIMP-2 binds 
to GC. Binding is disrupted at the acidic pH once cargo is 
delivered to the endosomal compartment. How soluble proteins 
such as cartilage oligomeric protein (COMP) and lysozyme C 
(LyzC) are sorted after exiting the TGN was recently elu-
cidated. That is, ADF/Cofilin1 was shown to increase calcium 
concentration in the lumen of the TGN through a calcium 
pump, SPCA1 (61). Higher Ca2+ promoted the oligomerization 
of Cab45, inducing the binding to soluble cargoes for TGN 
export (62). Although extensive studies have uncovered regulatory 
factors of TGN export, the coat protein that regulates various 
transport pathways occurring in the TGN remains unclear.

SIGNALING PATHWAYS REGULATED BY THE GOLGI 
COMPLEX FOR ORGANELLE HOMEOSTASIS

The Golgi complex is involved in the activation of signaling 
transduction by providing a platform for signaling molecules 
(Fig. 3). For example, the signaling of N-Ras in the Golgi 
complex increases T cell responses to antigen stimulation (63, 
64). Ras signaling initiated from the Golgi complex triggers 
sustained T cell activity compared to that from the plasma 
membrane (65). These observations lead to the question of 
how signaling molecules are specifically recruited to the Golgi 
complex, but not to other organelles. The membrane association 
of small GTPases was described as regulated by lipid modi-
fications, including farnesylation, prenylation, and palmitoylation 
(66). Further, the recruitment of Ras to the Golgi complex was 
determined by a balance between palmitoylation and depalmi-
toylation (67, 68). Given that many upstream regulators, such 
as GEF and GAP, exist in the Golgi complex (45, 46), it is 

possible that these are initially recruited to the apparatus to 
activate the Rho GTPase on its membrane. Notably, however, 
how GEF and GAP are recruited to specific organelles and 
what signaling activates Rho GTPase in TGN export are both 
poorly understood concepts. 

Adenylyl cyclase, which converts cellular ATP to cyclic 
AMP (cAMP), regulates PKA signaling upon activation of 
G-protein coupled receptors (GPCRs) (69, 70). PKA promotes 
the recruitment of ARF1 to the Golgi complex, resulting in 
membrane trafficking (71). Since GPCR signaling is mostly 
regulated at the plasma membrane, it is surprising that the 
Golgi complex is involved. In this regard, recent studies have 
uncovered a new role of the KDEL receptor (KDELR), a GPCR, 
in signaling transduction (72, 73). KDELR was originally known 
as a cargo receptor for COPI transport. Under ER stress 
conditions, ER resident proteins often leak from the ER and are 
captured by the KDELR located at the Golgi complex, which 
binds to the “KDEL” tetrapeptide sequence of ER resident 
proteins. This promotes the retrieval of proteins back to the ER 
through COPI vesicles (74, 75). Studies investigating its phy-
siological role revealed that different signaling pathways 
activated by KDELR regulate distinct transport pathways, 
including Gq/SRC for cargo export at the TGN as well as 
Gs/PKA for COPI transport (72, 73). This raises the key question 
regarding how various signaling pathways are regulated by this 
single receptor. Among the three types of KDELR (KDELR1/2/3) 
in mammalian cells, only KDELR1-mediated signaling has been 
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studied. We suspect that the multitude of different G-proteins 
coupled to KDELRs are likely to activate different downstream 
effector proteins. A proteomic approach using engineered 
ascorbic acid peroxidase (APEX) was recently utilized to 
determine the spatiotemporal protein networks of GPCRs in 
living cells (76, 77). This could be an appropriate technical 
approach for identifying new pathways regulated by KDELR in 
the Golgi complex.

Intracellular compartments maintain organelle homeostasis 
in response to environmental stress through a number of 
mechanisms. Over the past decades, the endoplasmic reticulum 
(ER) has been extensively studied with regard to the maintenance 
of homeostasis under stress. Protein synthesis is considerably 
enhanced under various physiological and pathological condi-
tions. Such increased rates of protein synthesis overwhelm the 
protein folding capacity of the ER, leading to the accumulation 
of misfolded protein (78). Multiple stress response mechanisms 
are activated to maintain organelle homeostasis and are 
cumulatively known as the unfolded protein response (UPR). 
As proteins are secreted through the Golgi, how it maintains 
homeostasis in the context of increased transport flux is 
another topic of considerable interest. However, a limited 
number of studies have the Golgi complex stress response. In 
this regard, proteins such as TFE3, proteoglycans, CREB3, and 
HSP47 have been identified as key factors in the maintenance 
Golgi homeostasis (79, 80). However, the mechanisms through 
which these factors regulate the Golgi stress response remain 
unclear. Further, since the Golgi is involved in various signaling 
pathways, it is likely that KDELR-associated signaling pathways 
promote transport through the organelle, reducing protein 
amounts within. Given the complex dynamics of the Golgi 
complex in diverse conditions, further research is needed to 
elucidate aspects such as the Golgi stress response and related 
signaling pathways.

CONCLUSION

The Golgi complex plays an important role in various cellular 
processes. Extensive studies have been conducted in order to 
understand the organelle from a membrane trafficking 
perspective. However, Golgi regulation under different conditions 
remains unclear. In addition to studies on membrane trafficking 
and related signaling, there are various fundamental questions 
that need to be addressed regarding the Golgi complex, such 
as the identification of signaling cues, understanding how 
organelle homeostasis is maintained, and elucidating the 
significance of glycosylation in the context of membrane 
trafficking. Moreover, a new form of intracellular communication 
regulated by direct organelle contact was recently discovered. 
This raises the question of whether the Golgi complex also 
communicates with other organelles through membrane 
contact and, if so, what the physiological significance of Golgi 
contact is.
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