Acknowledgement
This study was supported by grants from the National Research Foundation (NRF-2020R1C1C1008823, NRF-2017R1A5A1015366), the Korea Health Industry Development Institute (KHIDI-HR20C0025), POSCO Science Fellowship, and the BK21 Plus and BK21 FOUR Research Fellowship.
References
- Sato K and Nakano A (2007) Mechanisms of COPII vesicle formation and protein sorting. FEBS Lett 581, 2076-2082 https://doi.org/10.1016/j.febslet.2007.01.091
- Hsu VW, Lee SY and Yang JS (2009) The evolving understanding of COPI vesicle formation. Nat Rev Mol Cell Biol 10, 360-364 https://doi.org/10.1038/nrm2663
- Fourriere L, Jimenez AJ, Perez F and Boncompain G (2020) The role of microtubules in secretory protein transport. J Cell Sci 133, jcs237016 https://doi.org/10.1242/jcs.237016
- Barlowe C, Orci L, Yeung T et al (1994) COPII: a membrane coat formed by Sec proteins that drive vesicle budding from the endoplasmic reticulum. Cell 77, 895-907 https://doi.org/10.1016/0092-8674(94)90138-4
- Zanetti G, Pahuja KB, Studer S, Shim S and Schekman R (2011) COPII and the regulation of protein sorting in mammals. Nat Cell Biol 14, 20-28 https://doi.org/10.1038/ncb2390
- Makhoul C, Gosavi P and Gleeson PA (2019) Golgi dynamics: the morphology of the mammalian Golgi apparatus in health and disease. Front Cell Dev Biol 7, 112 https://doi.org/10.3389/fcell.2019.00112
- Lee TH and Linstedt AD (1999) Osmotically induced cell volume changes alter anterograde and retrograde transport, Golgi structure, and COPI dissociation. Mol Biol Cell 10, 1445-1462 https://doi.org/10.1091/mbc.10.5.1445
- Kellokumpu S, Sormunen R and Kellokumpu I (2002) Abnormal glycosylation and altered Golgi structure in colorectal cancer: dependence on intra-Golgi pH. FEBS Lett 516, 217-224 https://doi.org/10.1016/S0014-5793(02)02535-8
- Rothman JE and Wieland FT (1996) Protein sorting by transport vesicles. Science 272, 227 https://doi.org/10.1126/science.272.5259.227
- Orci L, Stamnes M, Ravazzola M et al (1997) Bidirectional transport by distinct populations of COPI-coated vesicles. Cell 90, 335-349 https://doi.org/10.1016/S0092-8674(00)80341-4
- Becker B and Melkonian M (1996) The secretory pathway of protists: spatial and functional organization and evolution. Microbiol Rev 60, 697 https://doi.org/10.1128/mr.60.4.697-721.1996
- Bonfanti L, Mironov AA Jr, Martinez-Menarguez JA et al (1998) Procollagen traverses the Golgi stack without leaving the lumen of cisternae: evidence for cisternal maturation. Cell 95, 993-1003 https://doi.org/10.1016/S0092-8674(00)81723-7
- Mironov AA, Beznoussenko GV, Nicoziani P et al (2001) Small cargo proteins and large aggregates can traverse the Golgi by a common mechanism without leaving the lumen of cisternae. J Cell Biol 155, 1225- 1238 https://doi.org/10.1083/jcb.200108073
- Donohoe BS, Kang B-H and Staehelin LA (2007) Identification and characterization of COPIa- and COPIb- type vesicle classes associated with plant and algal Golgi. Proc Natl Acad Sci U S A 104, 163 https://doi.org/10.1073/pnas.0609818104
- Losev E, Reinke CA, Jellen J, Strongin DE, Bevis BJ and Glick BS (2006) Golgi maturation visualized in living yeast. Nature 441, 1002-1006 https://doi.org/10.1038/nature04717
- Matsuura-Tokita K, Takeuchi M, Ichihara A, Mikuriya K and Nakano A (2006) Live imaging of yeast Golgi cisternal maturation. Nature 441, 1007-1010 https://doi.org/10.1038/nature04737
- Martinez-Menarguez JA, Prekeris R, Oorschot VMJ et al (2001) Peri-Golgi vesicles contain retrograde but not anterograde proteins consistent with the cisternal progression model of intra-Golgi transport. J Cell Biol 155, 1213-1224 https://doi.org/10.1083/jcb.200108029
- Lowe M and Kreis TE (1998) Regulation of membrane traffic in animal cells by COPI. Biochim Biophys Acta 1404, 53-66 https://doi.org/10.1016/S0167-4889(98)00046-9
- Nickel W, Brugger B and Wieland FT (2002) Vesicular transport: the core machinery of COPI recruitment and budding. J Cell Sci 115, 3235 https://doi.org/10.1242/jcs.115.16.3235
- Hoffman GR, Rahl PB, Collins RN and Cerione RA (2003) Conserved structural motifs in intracellular trafficking pathways: structure of the γCOP appendage domain. Mole Cell 12, 615-625 https://doi.org/10.1016/j.molcel.2003.08.002
- Jackson MR, Nilsson T and Peterson PA (1990) Identification of a consensus motif for retention of transmembrane proteins in the endoplasmic reticulum. EMBO J 9, 3153-3162 https://doi.org/10.1002/j.1460-2075.1990.tb07513.x
- Cosson P and Letourneur F (1994) Coatomer interaction with di-lysine endoplasmic reticulum retention motifs. Science 263, 1629 https://doi.org/10.1126/science.8128252
- Jackson Lauren P, Lewis M, Kent Helen M et al (2012) Molecular basis for recognition of dilysine trafficking motifs by COPI. Dev Cell 23, 1255-1262 https://doi.org/10.1016/j.devcel.2012.10.017
- Ma W and Goldberg J (2013) Rules for the recognition of dilysine retrieval motifs by coatomer. EMBO J 32, 926-937 https://doi.org/10.1038/emboj.2013.41
- Wu WJ, Erickson JW, Lin R and Cerione RA (2000) The γ-subunit of the coatomer complex binds Cdc42 to mediate transformation. Nature 405, 800-804 https://doi.org/10.1038/35015585
- Schmitz KR, Liu J, Li S et al (2008) Golgi localization of glycosyltransferases requires a Vps74p oligomer. Dev Cell 14, 523-534 https://doi.org/10.1016/j.devcel.2008.02.016
- Tu L, Tai WCS, Chen L and Banfield DK (2008) Signal-mediated dynamic retention of glycosyltransferases in the Golgi. Science 321, 404 https://doi.org/10.1126/science.1159411
- Dippold HC, Ng MM, Farber-Katz SE et al (2009) GOLPH3 bridges phosphatidylinositol-4- phosphate and actomyosin to stretch and shape the Golgi to promote budding. Cell 139, 337-351 https://doi.org/10.1016/j.cell.2009.07.052
- Tanigawa G, Orci L, Amherdt M, Ravazzola M, Helms JB and Rothman JE (1993) Hydrolysis of bound GTP by ARF protein triggers uncoating of Golgi-derived COP-coated vesicles. J Cell Biol 123, 1365-1371 https://doi.org/10.1083/jcb.123.6.1365
- Donaldson JG, Cassel D, Kahn RA and Klausner RD (1992) ADP-ribosylation factor, a small GTP-binding protein, is required for binding of the coatomer protein beta-COP to Golgi membranes. Proc Natl Acad Sci U S A 89, 6408 https://doi.org/10.1073/pnas.89.14.6408
- Kung LF, Pagant S, Futai E et al (2012) Sec24p and Sec16p cooperate to regulate the GTP cycle of the COPII coat. EMBO J 31, 1014-1027 https://doi.org/10.1038/emboj.2011.444
- Bigay J, Gounon P, Robineau S and Antonny B (2003) Lipid packing sensed by ArfGAP1 couples COPI coat disassembly to membrane bilayer curvature. Nature 426, 563-566 https://doi.org/10.1038/nature02108
- Reinhard C, Schweikert M, Wieland FT and Nickel W (2003) Functional reconstitution of COPI coat assembly and disassembly using chemically defined components. Proc Natl Acad Sci U S A 100, 8253 https://doi.org/10.1073/pnas.1432391100
- Lanoix J, Ouwendijk J, Stark A et al (2001) Sorting of Golgi resident proteins into different subpopulations of COPI vesicles : a role for ArfGAP1. J Cell Biol 155, 1199-1212 https://doi.org/10.1083/jcb.200108017
- Bigay J, Casella J-F, Drin G, Mesmin B and Antonny B (2005) ArfGAP1 responds to membrane curvature through the folding of a lipid packing sensor motif. EMBO J 24, 2244-2253 https://doi.org/10.1038/sj.emboj.7600714
- Park S-Y, Yang J-S, Li Z et al (2019) The late stage of COPI vesicle fission requires shorter forms of phosphatidic acid and diacylglycerol. Nat Commun 10, 3409 https://doi.org/10.1038/s41467-019-11324-4
- Yang J-S, Lee SY, Gao M et al (2002) ARFGAP1 promotes the formation of COPI vesicles, suggesting function as a component of the coat. J Cell Biol 159, 69-78 https://doi.org/10.1083/jcb.200206015
- Dodonova SO, Diestelkoetter-Bachert P, von Appen A et al (2015) A structure of the COPI coat and the role of coat proteins in membrane vesicle assembly. Science 349, 195 https://doi.org/10.1126/science.aab1121
- Glick BS and Nakano A (2009) Membrane traffic within the Golgi apparatus. Ann Rev Cell Dev Biol 25, 113-132 https://doi.org/10.1146/annurev.cellbio.24.110707.175421
- Patterson GH, Hirschberg K, Polishchuk RS, Gerlich D, Phair RD and Lippincott-Schwartz J (2008) Transport through the Golgi apparatus by rapid partitioning within a two-phase membrane system. Cell 133, 1055-1067 https://doi.org/10.1016/j.cell.2008.04.044
- Trucco A, Polishchuk RS, Martella O et al (2004) Secretory traffic triggers the formation of tubular continuities across Golgi sub-compartments. Nat Cell Biol 6, 1071-1081 https://doi.org/10.1038/ncb1180
- Pietro ES, Capestrano M, Polishchuk EV et al (2009) Group IV phospholipase A2α controls the formation of inter-cisternal continuities involved in intra-Golgi transport. PLOS Biology 7, e1000194 https://doi.org/10.1371/journal.pbio.1000194
- Yang J-S, Valente C, Polishchuk RS et al (2011) COPI acts in both vesicular and tubular transport. Nat Cell Biol 13, 996-1003 https://doi.org/10.1038/ncb2273
- Park S-Y, Yang J-S, Schmider AB, Soberman RJ and Hsu VW (2015) Coordinated regulation of bidirectional COPI transport at the Golgi by CDC42. Nature 521, 529 https://doi.org/10.1038/nature14457
- Farhan H and Hsu VW (2016) Cdc42 and cellular polarity: emerging roles at the Golgi. Trends Cell Biol 26, 241-248 https://doi.org/10.1016/j.tcb.2015.11.003
- Baschieri F, Confalonieri S, Bertalot G et al (2014) Spatial control of Cdc42 signalling by a GM130-RasGRF complex regulates polarity and tumorigenesis. Nat Commun 5, 4839 https://doi.org/10.1038/ncomms5839
- Bustelo XR (2001) Vav proteins, adaptors and cell signaling. Oncogene 20, 6372-6381 https://doi.org/10.1038/sj.onc.1204780
- Pulvirenti T, Giannotta M, Capestrano M et al (2008) A traffic-activated Golgi-based signalling circuit coordinates the secretory pathway. Nat Cell Biol 10, 912-922 https://doi.org/10.1038/ncb1751
- Guo Y, Sirkis DW and Schekman R (2014) Protein sorting at the trans-Golgi network. Ann Rev Cell Dev Biol 30, 169-206 https://doi.org/10.1146/annurev-cellbio-100913-013012
- Polishchuk EV, Di Pentima A, Luini A and Polishchuk RS (2003) Mechanism of constitutive export from the Golgi: bulk flow via the formation, protrusion, and en bloc cleavage of large trans-Golgi network tubular domains. Mol Biol Cell 14, 4470-4485 https://doi.org/10.1091/mbc.e03-01-0033
- Tanos B and Rodriguez-Boulan E (2008) The epithelial polarity program: machineries involved and their hijacking by cancer. Oncogene 27, 6939-6957 https://doi.org/10.1038/onc.2008.345
- Dittmer F, Ulbrich EJ, Hafner A et al (1999) Alternative mechanisms for trafficking of lysosomal enzymes in mannose 6-phosphate receptor-deficient mice are cell type-specific. J Cell Sci 112, 1591 https://doi.org/10.1242/jcs.112.10.1591
- Simmen T, Honing S, Icking A, Tikkanen R and Hunziker W (2002) AP-4 binds basolateral signals and participates in basolateral sorting in epithelial MDCK cells. Nat Cell Biol 4, 154-159 https://doi.org/10.1038/ncb745
- Brewer CF, Miceli MC and Baum LG (2002) Clusters, bundles, arrays and lattices: novel mechanisms for lectin-saccharide-mediated cellular interactions. Curr Opin Str Biol 12, 616-623 https://doi.org/10.1016/S0959-440X(02)00364-0
- Weisz OA and Rodriguez-Boulan E (2009) Apical trafficking in epithelial cells: signals, clusters and motors. J Cell Sci 122, 4253 https://doi.org/10.1242/jcs.032615
- Scheiffele P, Peranen J and Simons K (1995) N-glycans as apical sorting signals in epithelial cells. Nature 378, 96-98 https://doi.org/10.1038/378096a0
- Kornfeld S and Mellman I (1989) The Biogenesis of lysosomes. Ann Rev Cell Biol 5, 483-525 https://doi.org/10.1146/annurev.cb.05.110189.002411
- Lefrancois S, Zeng J, Hassan AJ, Canuel M and Morales CR (2003) The lysosomal trafficking of sphingolipid activator proteins (SAPs) is mediated by sortilin. EMBO J 22, 6430-6437 https://doi.org/10.1093/emboj/cdg629
- Ni X and Morales CR (2006) The lysosomal trafficking of acid sphingomyelinase is mediated by sortilin and mannose 6-phosphate receptor. Traffic 7, 889-902 https://doi.org/10.1111/j.1600-0854.2006.00429.x
- Reczek D, Schwake M, Schroder J et al (2007) LIMP-2 is a receptor for lysosomal mannose-6-phosphate-Independent targeting of β-glucocerebrosidase. Cell 131, 770-783 https://doi.org/10.1016/j.cell.2007.10.018
- von Blume J, Alleaume A-M, Cantero-Recasens G et al (2011) ADF/Cofilin regulates secretory cargo sorting at the TGN via the Ca2+ ATPase SPCA1. Dev Cell 20, 652-662 https://doi.org/10.1016/j.devcel.2011.03.014
- von Blume J, Alleaume A-M, Kienzle C, Carreras-Sureda A, Valverde M and Malhotra V (2012) Cab45 is required for Ca2+-dependent secretory cargo sorting at the trans-Golgi network. J Cell Biol 199, 1057-1066 https://doi.org/10.1083/jcb.201207180
- Bivona TG, Quatela S and Philips MR (2006) Analysis of Ras activation in living cells with GFP-RBD. Methods Enzymol 407, 128-143 https://doi.org/10.1016/S0076-6879(05)07012-6
- Ibiza S, Perez-Rodriguez A, Ortega A et al (2008) Endothelial nitric oxide synthase regulates N-Ras activation on the Golgi complex of antigen-stimulated T cells. Proc Natl Acad Sci U S A 105, 10507-10512 https://doi.org/10.1073/pnas.0711062105
- Yasuda T and Kurosaki T (2008) Regulation of lymphocyte fate by Ras/ERK signals. Cell Cycle 7, 3634-3640 https://doi.org/10.4161/cc.7.23.7103
- Ahearn IM, Haigis K, Bar-Sagi D and Philips MR (2011) Regulating the regulator: post-translational modification of RAS. Nat Rev Mol Cell Biol 13, 39-51 https://doi.org/10.1038/nrm3255
- Goodwin JS, Drake KR, Rogers C et al (2005) Depalmitoylated Ras traffics to and from the Golgi complex via a nonvesicular pathway. J Cell Biol 170, 261-272 https://doi.org/10.1083/jcb.200502063
- Rocks O, Peyker A, Kahms M et al (2005) An acylation cycle regulates localization and activity of palmitoylated Ras isoforms. Science 307, 1746-1752 https://doi.org/10.1126/science.1105654
- Daaka Y, Luttrell LM and Lefkowitz RJ (1997) Switching of the coupling of the β2-adrenergic receptor to different G proteins by protein kinase A. Nature 390, 88-91 https://doi.org/10.1038/36362
- Clark RB, Knoll BJ and Barber R (1999) Partial agonists and G protein-coupled receptor desensitization. Trends Pharm Sci 20, 279-286 https://doi.org/10.1016/S0165-6147(99)01351-6
- Muniz M, Martin ME, Hidalgo J and Velasco A (1997) Protein kinase A activity is required for the budding of constitutive transport vesicles from the trans-Golgi network. Proc Natl Acad Sci U S A 94, 14461-14466 https://doi.org/10.1073/pnas.94.26.14461
- Cancino J, Capalbo A, Di Campli A et al (2014) Control systems of membrane transport at the interface between the endoplasmic reticulum and the Golgi. Dev Cell 30, 280-294 https://doi.org/10.1016/j.devcel.2014.06.018
- Giannotta M, Ruggiero C, Grossi M et al (2012) The KDEL receptor couples to Gαq&11 to activate Src kinases and regulate transport through the Golgi. EMBO J 31, 2869 https://doi.org/10.1038/emboj.2012.134
- Semenza JC, Hardwick KG, Dean N and Pelham HRB (1990) ERD2, a yeast gene required for the receptor-mediated retrieval of luminal ER proteins from the secretory pathway. Cell 61, 1349-1357 https://doi.org/10.1016/0092-8674(90)90698-E
- Lewis MJ and Pelham HRB (1992) Ligand-induced redistribution of a human KDEL receptor from the Golgi complex to the endoplasmic reticulum. Cell 68, 353-364 https://doi.org/10.1016/0092-8674(92)90476-S
- Paek J, Kalocsay M, Staus DP et al (2017) Multidimensional tracking of GPCR signaling via peroxidase-catalyzed proximity labeling. Cell 169, 338-349.e311 https://doi.org/10.1016/j.cell.2017.03.028
- Lobingier BT, Huttenhain R, Eichel K et al (2017) An approach to spatiotemporally resolve protein interaction networks in living cells. Cell 169, 350-360.e312 https://doi.org/10.1016/j.cell.2017.03.022
- Bernales S, Papa FR and Walter P (2006) Intracellular signaling by the unfolded protein response. Ann Rev Cell Dev Biol 22, 487-508 https://doi.org/10.1146/annurev.cellbio.21.122303.120200
- Sun Z and Brodsky JL (2019) Protein quality control in the secretory pathway. J Cell Biol 218, 3171-3187 https://doi.org/10.1083/jcb.201906047
- Sasaki K and Yoshida H (2019) Golgi stress response and organelle zones. FEBS Lett 593, 2330-2340 https://doi.org/10.1002/1873-3468.13554