• Title/Summary/Keyword: second-order accuracy

Search Result 563, Processing Time 0.027 seconds

A virtual parameter to improve stability properties for an integration method

  • Chang, Shuenn-Yih
    • Earthquakes and Structures
    • /
    • v.11 no.2
    • /
    • pp.297-313
    • /
    • 2016
  • A virtual parameter is introduced into the formulation of the previously published integration method to improve its stability properties. It seems that the numerical properties of this integration method are almost unaffected by this parameter except for the stability property. As a result, it can have second order accuracy, explicit formulation and controllable numerical dissipation in addition to the enhanced stability property. In fact, it can have unconditional stability for the system with the instantaneous degree of nonlinearity less than or equal to the specified value of the virtual parameter for the modes of interest for each time step.

FREE SURFACE FLOW COMPUTATION USING MOMENT-OF-FLUID AND STABILIZED FINITE ELEMENT METHOD (Moment-Of-Fluid (MOF) 방법과 Stabilized Finite Element 방법을 이용한 자유표면유동계산)

  • Ahn, H.T.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.228-230
    • /
    • 2009
  • The moment-of-fluid (MOF) method is a new volume-tracking method that accurately treats evolving material interfaces. Based on the moment data (volume and centroid) for each material, the material interfaces are reconstructed with second-order spatial accuracy in a strictly conservative manner. The MOF method is coupled with a stabilized finite element incompressible Navier-Stokes solver for two fluids, namely water and air. The effectiveness of the MOF method is demonstrated with a free-surface dam-break problem.

  • PDF

An Efficient Multigrid Diagonalized ADI Method for 3-Dimensional Compressible Flow Analysis (3차원 압축성 유동 해석을 위한 효율적인 다중 격자 DADI 기법)

  • Park Soo-Hyung;Sung Chun-ho;Kwon Jang Hyuk
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.05a
    • /
    • pp.29-34
    • /
    • 1998
  • An efficient 3-dimensional compressible solver is developed using the second-order upwind TVD scheme and the multigrid diagonalized ADI method. The multigrid method is improved so that the present DADI algorithm obtains better convergence rates. Results are computed on Cray C90 computer for transonic unsaperated flows past ONERA-M6 wing to demonstrate the accuracy and efficiency. The results show good agreement with experimetal data. A reduction of four orders of residual for 3-dimensional transonic flow is obtained about 99 seconds.

  • PDF

Development of an Incompressible Navier-Stokes Solver using SMAC Algorithm on Unstructured Triangular Meshes (비구조형 삼각형 격자에 대한 SMAC기법을 이용한 비압축성 나비어-스톡스 방정식 해법 개발)

  • Nam Hyeun S.;Moon Young J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.55-60
    • /
    • 1997
  • An unstructured finite volume method is presented for seeking steady and unsteady flow solutions of the two-dimensional incompressible viscous flows. In the present method, SMAC-type algorithm is implemented on unstructured triangular meshes, using second order upwind scheme for the convective fluxes. Validation tests are made for various steady and unsteady incompressible flows. Convergence characteristics are examined and accuracy comparisons are made with some benchmark solutions.

  • PDF

Edgeworth Expansion and Bootstrap Approximation for Survival Function Under Koziol-Green Model

  • Kil Ho;Seong Hwa
    • Communications for Statistical Applications and Methods
    • /
    • v.7 no.1
    • /
    • pp.233-244
    • /
    • 2000
  • Confidence intervals for survival function give useful information about the lifetime distribution. In this paper we develop Edgeworkth expansions as approximation to the true and bootstrap distributions of normalized nonparametric maximum likelihood estimator of survival function in the Koziol-Green model and then use these results to show that the bootstrap approximations have second order accuracy.

  • PDF

A Derivation of Operational Matrices via Improved Block Pulse Coefficients Estimation Method (개선된 블럭 펄스 계수 추정 기법을 이용한 적분 연산 행렬 유도)

  • Kim, Tai-Hoon;Shim, Jae-Sun;Lee, Hae-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2277-2279
    • /
    • 2003
  • This paper presents a new method for finding the Block Pulse series coefficients and deriving the Block Pulse integration operational matrices which are necessary for the control fields using the Block Pulse functions. This paper presents the method for improving the accuracy of the Block Pulse series coefficients and derives the related integration operational matrices by using the Lagrange second order interpolation polynomial and expands that matrix to general form.

  • PDF

PERFORMANCE ANALYSIS OF HOVERING UH-60A ROTOR BLADE (UH-60A 로터 블레이드의 정지비행 성능해석)

  • Park, Y.M.;Choi, I.H.;Chang, B.H.
    • Journal of computational fluids engineering
    • /
    • v.13 no.4
    • /
    • pp.45-49
    • /
    • 2008
  • The present paper describes the results of performance analysis for UH-60A rotor blade in hover. For the numerical simulations, commercial CFD software, FLUENT was used with Spalart-Allmaras turbulence model. The flow solver was based on node based scheme and second order spatial accuracy options was used for simulations. For the enhancement of wake capturing capability, high resolution grid was used around tip vortex region. Granting that somewhat over-prediction of thrust was observed near blade tip region, performance was well correlated with experimental data within 3% accuracy in the operating region. Finally it was shown that the present flow solver can be used as a preliminary performance analysis tool for hovering helicopter rotor blades.

An unstructured finite volume method for unsteady incompressible flows with full second order accuracy (2차 정확도를 가지는 비정상 비압축성 유동장 해석을 위한 비정렬 유한 체적법의 개발)

  • Lee K. S.;Baek J. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.03a
    • /
    • pp.71-76
    • /
    • 2004
  • An extension of our recently developed locally linear reconstruction scheme to 2 dimensional incompressible flow solver is presented. The solver is based on a semi-implicit fractional step method in which the convective term is discretized by Adams-Bashforth method and the diffusion term by Crank-Nicolson method. Several numerical examples are tested to demonstrate the mesh type independent accuracy of the solver, which include decaying vortex flow, square cavity flow, and flow around a circular cylinder. The above examples are solved on quadrilateral or hybrid meshes. For all numerical examples, we obtained reasonable results.

  • PDF

A Study of Accuracy Improvement of an Analysis of Flow around Arbitrary Bodies by Using an Eulerian-Lagrangian Method (Eulerian-Lagrangian 방법을 사용한 임의 물체주위 유동해석의 정도 향상을 위한 연구)

  • Park Il-Ryong;Chun Ho-Hwan
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2001.05a
    • /
    • pp.105-110
    • /
    • 2001
  • An Eulerian-Lagrangian method, so called immersed boundary method, is used for analysing viscous flow around arbitrary bodies, where governing equations are discretized on a regular grid by using a finite volume method. To improve the accuracy of flow near body boundaries, a second-order accurate interpolation scheme is used and a level-set based grid deformation method is presented to construct the adaptive grids around body boundaries. The present scheme is used to simulate steady flow around a semicircular cylinder mounted on the bottom of flow domain and calculated results are validated by results of a body fitted grid method. Finally, present method is applied to a complex flow around multi body and the usefulness is checked by investigating calculated results.

  • PDF

RICHARDSON EXTRAPOLATION AND DEFECT CORRECTION OF MIXED FINITE ELEMENT METHODS FOR ELLIPTIC OPTIMAL CONTROL PROBLEMS

  • Chen, Yanping;Huang, Yunqing;Hou, Tianliang
    • Journal of the Korean Mathematical Society
    • /
    • v.49 no.3
    • /
    • pp.549-569
    • /
    • 2012
  • In this paper asymptotic error expansions for mixed finite element approximations to a class of second order elliptic optimal control problems are derived under rectangular meshes, and the Richardson extrapolation of two different schemes and interpolation defect correction can be applied to increase the accuracy of the approximations. As a by-product, we illustrate that all the approximations of higher accuracy can be used to form a class of a posteriori error estimators of the mixed finite element method for optimal control problems.