• Title/Summary/Keyword: scientific analysis

Search Result 3,484, Processing Time 0.031 seconds

On the Study of Foundation and Activity in the Early Scientific Societies (초창기 과학학회의 설립 및 활동에 관한 연구)

  • Yoon, Ill-He
    • Journal of Science Education
    • /
    • v.41 no.2
    • /
    • pp.267-280
    • /
    • 2017
  • The purpose of this study is to review the foundation of the representative early scientific societies and their major activities. The documents, books, and literature related to this study were collected through internet websites (e.g., google scholar, wikipedia) and analyzed by the qualitative content analysis method. The result of this study shows that requirement for the necessary resources to acquire or to prepare the instruments for the experiment is significantly increased with the rising importance of the experiments to conduct the scientific methods. As a consequence, scientists faced urgent necessities to conduct scientific experiments with cooperation and exchange of the newest information by establishing a community beyond the independent and individual research activity. Establishment of the scientific societies is the result of these necessities. At the beginning of the scientific societies, the resources are provided by either wealthy patron or member contribution or public through foundation of government organization. This study provides the implications for future scientific societies.

A Scientific Analysis of Archaeological Textiles and Wooden comb Excavated from Hapgang-ri, Dong-myun, Yungi-gun, Chungcheongnam-do (충남 연기군 동면 합강리 유적 출토 직물류 및 목제 빗의 과학적 분석)

  • Cho, Namchul;Kim, Woohyun;Kim, Soochul
    • Journal of Conservation Science
    • /
    • v.30 no.4
    • /
    • pp.329-334
    • /
    • 2014
  • A scientific analysis of ancient textiles provides significant data to understand weaving techniques and culture of textiles in each region and charateristics of materials used at that time. In addition, species identification of waterlogged wooden objects is a scientific analysis method that allow us to verify information of relation of foreign species trade and exchange, of preferable species through kinds of wooden products, and of forest environment as well as method setting of conservation. As a result of a species analysis about historical textiles and a wooden comb in a bronze bowl that were excavated from Hapgang-ri, Dong-Myun, Yungi-gun, Chungcheongnam-do, Textile1 and Textile3 are identified as Urticacese Boehmeri nivea ; ramie, Textie2 is identified as Malvaceae Gossypium herbaceum, and a wooden comb is identified as Betulaceae Betula spp. It is expected that this result will help to make further comparative studies, identifying species of textiles and trees of ancient times.

Analysis of the Nature of Science (NOS) in Integrated Science Textbooks of the 2015 Revised Curriculum (2015 개정 교육과정 통합과학 교과서의 과학의 본성(NOS) 분석)

  • Jeon, Young Been;Lee, Young Hee
    • Journal of Science Education
    • /
    • v.44 no.3
    • /
    • pp.273-288
    • /
    • 2020
  • This study aims to investigate the presentation of the Nature of Science (NOS) in integrated science textbooks of the 2015 revised curriculum. The five integrated science textbooks published by the revised 2015 curriculum were analyzed with the conceptual framework of the four themes of the Nature of Science (NOS) (Lee, 2013) based on scientific literacy. The four themes of the NOS are 1. nature of scientific knowledge (theme I), 2. nature of scientific inquiry (theme II), 3. nature of scientific thinking (theme III), and 4. nature of interactions among science, technology, and society. The reliability of the textbooks analysis was measured between two coders by the Cohen's kappa and resulted in between 0,83 and 0,96, which means the results of analysis was consistent and reliable. The findings were as follows. First, overall theme II, nature of scientific inquiry emphasized on the integrated science textbooks of the 2015 revised curriculum by devoting the contents over 40 % in the all five publishing companies' textbooks. Second, while the theme II, nature of scientific inquiry was emphasized on the textbooks regardless of the publishing companies, other themes of the NOS were emphasized in different portions by the publishing companies. Thus, the focus among other three themes of the NOS was presented differently by the publishing companies except that in theme II, nature of scientific inquiry was most emphasized on integrated science textbooks. Third, the presentation of the NOS was identified similarly across the topics of integrated science textbooks except on topic 4. Environment and Energy. The theme IV, nature of interactions among science, technology, and society was emphasized reasonably only in the topic of Environment and Energy of the textbooks. Finally, the presentation of the NOS in the integrated science textbooks of the 2015 revised curriculum were more balanced among the four themes of the NOS with focus on the scientific inquiry compared to the previous curriculum textbooks.

Analysis of Achievement Standards, Activities, and Assessment Items in Integrated Science, Chemistry I, Chemistry II Textbooks on Science Core Competency: Focusing on Acid·Base·Neutralization and Oxidation·Reduction (통합과학, 화학 I, 화학 II의 성취기준과 교과서 활동 및 평가 문항의 과학과 핵심역량 분석: '산·염기·중화반응'과 '산화·환원'을 중심으로)

  • Ko, EunAh;Choi, Aeran
    • Journal of the Korean Chemical Society
    • /
    • v.63 no.6
    • /
    • pp.486-504
    • /
    • 2019
  • This study analyzed achievement standards in the 2015 Science Education Standards as well as activities and assessment items in the Integrated Science, Chemistry I, and Chemistry II textbooks using science core competencies and subcomponents. All five scientific core competencies, in order of scientific thinking capacity, scientific inquiry capacity, scientific communication capacity, scientific problem solving capacity, and scientific participation and lifelong learning capacity, were included in the achievement standards of Integrated Science. Scientific thinking capacity, scientific inquiry capacity, and scientific communication capacity were included in the achievement standards of Chemistry I. The achievement standards of Chemistry II only included scientific thinking capacity. All five scientific core competencies were involved in activities of Integrated Science, Chemistry I, and Chemistry II textbooks and the highest propotion was scientific thinking capacity and scientific inquiry capacity. All five scientific core competencies were involved in assessment items of Integrated Science, Chemistry I, and Chemistry II textbooks and the highest proportion was scientific thinking capacity.

Analysis of Achievement Standards, Activities, and Assessment Items in the 2015 Revised Science Curriculum and Grade 7 Science Textbooks: Focusing on Science Core Competencies (2015 개정 과학과 교육과정에 제시된 중학교 1학년 성취기준과 과학 1 교과서에 포함된 활동과 평가 문항 분석: 과학과 핵심역량 중심으로)

  • Yun, Doun;Choi, Aeran
    • Journal of the Korean Chemical Society
    • /
    • v.63 no.3
    • /
    • pp.196-208
    • /
    • 2019
  • This study analyzed achievement standards in the 2015 revised Science Education Standards as well as activities and assessment items in grade 7 science textbooks using science core competencies and subcomponents. Scientific participation and lifelong learning capacity was not involved in the achievement standards. Logical thinking of scientific thinking capacity, planning and carrying out investigation, analyzing and interpreting data, developing and using models, and constructing explanation of scientific inquiry capacity, collecting and selecting information of scientific problem solving capacity, and using various communication methods of scientific communication capacity were involved in the achievement standards. All five scientific core competencies including all subcomponents except rational decision making of scientific problem solving capacity and understanding and coordinating diverse thoughts of scientific communication capacity were involved in activities of science textbooks. All five scientific core competencies were involved in assessment items of science textbooks. Logical thinking and creative thinking of scientific thinking capacity, planning and carrying out investigation and constructing explanation of scientific inquiry capacity, identifying problems, collecting and selecting information, suggesting solutions, and performing of scientific problem solving capacity, using various communication methods, arguing based on evidence of scientific communication capacity, and being interested in science technology and society issues of scientific participation and lifelong learning capacity.

Secondary Beginning Teachers' Views of Scientific Inquiry: With the View of Hands-on, Minds-on, and Hearts-on (과학탐구에 대한 중등 초임교사의 인식: Hands-on, Minds-on, Hearts-on의 관점으로)

  • Park, Young-Shin
    • Journal of the Korean earth science society
    • /
    • v.31 no.7
    • /
    • pp.798-812
    • /
    • 2010
  • The purpose of this study was to investigate beginning teachers' views of scientific inquiry envisioned in science education reform, which is the main goal of science education at schools. Teachers' views about scientific inquiry influence their students' learning in the classroom, so it is significant to investigate teachers' views about the scientific inquiry. 126 beginning science teachers participated in this study. The survey asking teachers' view of general scientific inquiry, nature of science (NOS) and the relationship of science, technology, and society (STS), was developed and implemented for 30 minutes. Alternative views of scientific inquiry including NOS and STS were emerged through data analysis with open coding system. The reliability and validity of data collection and data analysis were constructed through the discussion with experts in science education. The results of this study were as follows. Participants defined scientific inquiry as opportunities of 'Hands-On' and 'Minds-On' or its combination rather than 'Hearts-On'. However, teachers demonstrated the view of 'Hands-On' for the purpose of scientific inquiry and for teachers' roles in its implementation. The view of 'Hearts-On' about scientific inquiry was not identified. The naive view of NOS were identified more than informative one. More positive attitude about the relationship of STS was released. The implication was made in teacher education, especially structured induction program for beginning teachers.

The Effect of Computer Scientific Attitude on Academic Achievement of Information Gifted Students (정보영재들의 컴퓨터 과학적 태도가 학업성취도에 미치는 영향)

  • Chung, Jong-In
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.7
    • /
    • pp.537-543
    • /
    • 2020
  • In order to cultivate the talents needed in the 4th industrial revolution era, it is necessary to select gifted students and train them systematically. The affective characteristics of the gifted are self-concept, personality, sociality, motivation, morality, attitude and interest, and these are important factors that affect science achievement. In particular, computer scientific attitude is an important variable affecting computer science achievement. This study developed a computer scientific attitude test based on TOSRA developed by Fraser to measure the affective characteristics of information-gifted students. The computer scientific attitude test is composed of 7 areas: social implications of computer science, attitude to computer scientific inquiry, adoption of computer scientific attitudes, adoption of computer scientific attitudes, leisure interest in computer science, career interest in computer science, and normality of computer scientists. The relationship between computer scientific attitude and academic achievement of gifted students was analyzed using the developed test. To determine find out whether computer scientific attitude significantly predicts academic achievement, the results of a regression analysis showed that t = 2.543 and p = 0.025, indicating that the average of computer science attitude significantly predicted academic achievement.

Analysis of Relationships of Scientific Communication Skills, Science Process Skills, Logical Thinking Skills, and Academic Achievement Level of Elementary School Students (초등학생의 과학적 의사소통능력과 과학 탐구능력, 논리적 사고력, 학업 성취도 수준과의 관계 분석)

  • Jeon, Seongsoo;Park, Jong-Ho
    • Journal of The Korean Association For Science Education
    • /
    • v.34 no.7
    • /
    • pp.647-655
    • /
    • 2014
  • The purpose of this study is to acquire teaching insights for improving scientific literacy by analyzing the effects of scientific communication skills, science process skills, and logical thinking skills of elementary school students on academic achievement level. The participants are 64, sixth grade elementary school students. Survey materials include the results of Scientific Communication Skill Test (SCST), Test of Science Process Skills (TSPS), Group Assessment of Logical Thinking (GALT), multiple choice test & short answer test, descriptive answer test on science, and academic achievement level test on all subjects. Based on these data, the study analyzed the relationships of science process skills, logical thinking skills, and scientific communication skills, and each category's effect on academic achievement level. Furthermore, under the assumption that scientific communication skills are affected by science process skills and logical thinking skills and directly influence the academic level, the research discovered three types of correlations as a structural model. The results show that there are considerable correlations in scientific communication skills, science process skills, and logical thinking skills. Also, these three abilities have meaningful correlations with learner's writing and descriptive question level on science curriculum and overall academic achievement level; the level of correlation differ a bit by subcategory factors. In conclusion, setting the model, science process skills and logical thinking skills influence scientific communication skill, and the skill directly influences the learner's academic level. Further analysis of the results show that scientific communication skill influences the academic achievement level of all subjects the most.

Development of Survey Tool for the Scientific Character of Elementary Student (초등학생을 위한 과학인성 검사 도구 개발)

  • Nam, Ilkyun;Im, Sungmin
    • Journal of The Korean Association For Science Education
    • /
    • v.38 no.6
    • /
    • pp.825-838
    • /
    • 2018
  • The purpose of this study is to develop a survey tool of scientific character for elementary student which connects science education and character education effectively by figuring out traits of elementary students' character being presented in teaching and learning context of elementary school science. For this, we adapted the theocratical model from the previous research which defined scientific character as the competencies being able to practice in concrete teaching and learning context of science. Based on this model, we developed the survey tool as 'Scientific Character Inventory for Elementary Student' to assess elementary students' scientific character as the competences to practice the virtues being pursued in the context of elementary school science and verified its reliability and validity. As a result of an exploratory and confirmatory factor analysis, we confirmed all the items could be summarized into 28 items and eight constructs such as scientific problem-solving, self-management, self-reflection, communication, interpersonal skill, community participation, global citizenship, and environmental ethics awareness. We found that minimum reliability coefficient of constructs was over than 0.5 and reliability coefficient of the total items was 0.878. And also, there was modest relationship between each construct and the total score of scientific character. These results show that the developed survey tool can be useful in evaluating the effectiveness of science character education. This study is meaningful in that it systematically reveals constructs of scientific character which can be raised in concrete context of science teaching and learning so as to suggest the survey tool to assess this.

The Pre-Service Elementary School Teachers' Analyses on the Components of Scientific Attitude by Learning Topics of Science Textbooks and the Educational Effects of the Analyzing Activity (초등 예비교사들의 과학 교과서 학습 주제별 과학적 태도 하위 요소 분석 및 분석 활동의 교육적 효과 - '지구와 우주' 영역 단원을 중심으로 -)

  • Jang, Myeong-Deok
    • Journal of Korean Elementary Science Education
    • /
    • v.41 no.1
    • /
    • pp.14-29
    • /
    • 2022
  • The purpose of this study is to investigate the components of scientific attitude by some learning topics in the 3rd~6th grade science textbooks that the pre-service elementary school teachers judge to be teachable in class and the educational effects of this analysis activity for the pre-service teachers. The several results of this study are as follows: The pre-service teachers responded that, for all learning topics, they could teach diverse components of scientific attitude and the number of components expressed in their responses is more than the components specified in the teacher's guides. Among the components of scientific attitude, 'curiosity', 'open-mindedness', 'respect for evidence', and 'objectivity' showed relatively high possibility of teaching, while 'honesty', 'collaboration', 'positive acceptance of failure', 'critical mind' and 'suspension of judgment' showed relatively low possibility of teaching. The responses that pre-service teachers judged to be teachable also showed similar patterns in the number of components of scientific attitude and the rate of the components between the learning topics of the 3~4th grades and the learning topics of the 5~6th grades. In addition, this pre-service teachers' analysis activity on the components of scientific attitude by learning topics in science textbooks suggested educational effects such as 'the deep understanding of the components of scientific attitude', 'the understanding and applying the components of scientific attitude in the context of science class', and so on.