• Title/Summary/Keyword: scattering medium

Search Result 182, Processing Time 0.024 seconds

Verification on Diffusion of Beam Propagation in Randomly Distributed Scattering Medium (무질서하게 분포된 산란매질에서 빔전파의 확산에 관한 검증)

  • Kim, Ki-Jun;Lee, Hoo-Seol
    • Journal of the Korean Applied Science and Technology
    • /
    • v.24 no.4
    • /
    • pp.354-361
    • /
    • 2007
  • The distribution of light in a randomly scattering medium can represent problems found in many area. Particularly, in the clinical application of lasers for Photodynamic therapy(PDT) or in the fluorescence spectroscopy for biological tissue, turbidity plays a very important role. The influences of fluorophor, scatterer, and absorber in turbid material by light scattering were interpreted for the scattered fluorescence intensity and wavelength. The molecular properties have been studied by laser induced fluorescence spectroscopy in scattering medium as tissue. It has been found that the effects of optical properties in scattering media could be investigated by the optical $parameters({\mu}_s$, ${\mu}_a$ ,${\mu}t)$. Experimental and Monte Carlo simulation method for modelling light transport in tissue was applied. The experimental results using a randomly distributed scattering medium were discussed and compared with those obtained through Monte Carlo simulation. It'll be also important in designing the best model for oil chemistry, medicine and application of medical engineering.

Prediction of Radiative Heat Transfer in a Three-Dimensional Gas Turbine Combustor with the Finite-Volume Method (유한체적법에 의한 복잡한 형상을 갖는 3차원 가스터빈 연속기내의 복사열 전달 해석)

  • Kim, Man-Yeong;Baek, Seung-Uk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.8
    • /
    • pp.2681-2692
    • /
    • 1996
  • The finite-volume method for radiation in a three-dimensional non-orthogonal gas turbine combustion chamber with absorbing, emitting and anisotropically scattering medium is presented. The governing radiative transfer equation and its discretization equation using the step scheme are examined, while geometric relations which transform the Cartesian coordinate to a general body-fitted coordinate are provided to close the finite-volume formulation. The scattering phase function is modeled by a Legendre polynomial series. After a benchmark solution for three-dimensional rectangular combustor is obtained to validate the present formulation, a problem in three-dimensional non-orthogonal gas turbine combustor is investigated by changing such parameters as scattering albedo, scattering phase function and optical thickness. Heat flux in case of isotropic scattering is the same as that of non-scattering with specified heat generation in the medium. Forward scattering is found to produce higher radiative heat flux at hot and cold wall than backward scattering and optical thickness is also shown to play an important role in the problem. Results show that finite-volume method for radiation works well in orthogonal and non-orthogonal systems.

Position Detection of a Scattering 3D Object by Use of the Axially Distributed Image Sensing Technique

  • Cho, Myungjin;Shin, Donghak;Lee, Joon-Jae
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.4
    • /
    • pp.414-418
    • /
    • 2014
  • In this paper, we present a method to detect the position of a 3D object in scattering media by using the axially distributed sensing (ADS) method. Due to the scattering noise of the elemental images recorded by the ADS method, we apply a statistical image processing algorithm where the scattering elemental images are converted into scatter-reduced ones. With the scatter-reduced elemental images, we reconstruct the 3D images using the digital reconstruction algorithm based on ray back-projection. The reconstructed images are used for the position detection of a 3D object in the scattering medium. We perform the preliminary experiments and present experimental results.

A SCATTERING PROBLEM IN A NONHOMOGENEOUS MEDIUM

  • Anar, I.Ethem
    • Bulletin of the Korean Mathematical Society
    • /
    • v.34 no.3
    • /
    • pp.335-350
    • /
    • 1997
  • In this article, a scattering problem in a nonhomogeneous medium is formulated as an integral equation which contains boundary and volume integrals. The integral equation is solved for sufficiently small $$\mid$$\mid$1-p$\mid$$\mid$,$\mid$$\mid${k_i}^2-k^2$\mid$$\mid$\;and\;$\mid$$\mid${\nabla}p$\mid$$\mid$$ where $k,\;k_i$ and p the wave numbers and the density respectively.

  • PDF

Numerical Analysis of Natural Convection-Radiation Heat Transfer in an Enclosure Containing Absorbing, emitting and Linear Anisotropic Scattering Medium (흡수,방사 및 선형비등방 산란 매질을 포함하는 밀폐공간내의 자연대류- 복사열전달에 대한 수치해석)

  • 차상명;김종열;박희용
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.5
    • /
    • pp.952-964
    • /
    • 1992
  • The interaction of natural convection and radiation heat transfer in a two dimensional square enclosure containing absorbing, emitting and linear anisotropically scattering gray medium is numerically analyzed. P-1 and P-3 approximation is introduced to calculate radiation heat transfer. The effects of scattering albedo, wall emissivity, scattering anisotropy, and optical thickness on the characteristics of the flow and temperature field and heat transfer are investigated. Temperature and velocity profiles depend a great deal on the scattering albedo, and the importance of this effect increases with decrease in albelo. Planck number is another important parameter in radiation heat transfer. The increase in scattering albedo increases convection heat transfer and decreases radiation heat transfer at hot wall. However, the increase in scattering albedo decreases both convection and radiation heat transfer at cold wall. The increase in optical thickness decreases radiation heat transfer. The scattering anisotropy has important effects on the radiation heat transfer only. The highly forward scattering leads to an increase of radiation heat transfer whereas the highly backward scattering leads to an decrease of radiation heat transfer. The effect of scattering anisotropy decreases when reducing the wall emissivity.

COMPARISON OF TWO SCATTERING PHASE FUNCTIONS IN MULTIPLE SCATTERING ENVIRONMENT (다중산란 환경에서의 두개의 산란 위상함수 비교)

  • Seon, Kwang-Il
    • Publications of The Korean Astronomical Society
    • /
    • v.25 no.4
    • /
    • pp.113-118
    • /
    • 2010
  • The Henyey-Greenstein (H-G) phase function, which is characterized by a single parameter, has been generally used to approximate the realistic dust-scattering phase function in investigating scattering properties of the interstellar dust. Draine (2003) proposed a new analytic phase function with two parameters and showed that the realistic phase function is better represented by his phase function. If the H-G and Draine's phase functions are significantly different, using the H-G phase function in radiative transfer models may lead to wrong conclusions about the dust-scattering properties. Here, we investigate whether the H-G and Draine's phase functions would indeed produce significant differences in radiative transfer calculations for two simple configurations. For the uniformly distributed dust with an illuminating star at the center, no significant difference is found. However, up to ~ 20% of difference is found when the central star is surrounded by a spherical-shell dust medium and the radiation of $\lambda$ < $2000\;{\AA}$ is considered. It would mean that the investigation of dust-scattering properties using the H-G phase function may produce errors of up to ~ 20% depending on the geometry of dust medium and the radiation wavelength. This amount of uncertainty would be, however, unavoidable since the configurations of dust density and radiation sources are only approximately available.

Numerical Study On Combined Natural Convection-Radiation In Partially Open Square Compartments with A Heater (발열체가 있는 열린 공간내에서의 자연대류-복사열전달 현상에 관한 수치적 연구)

  • 손봉세;한규익;서석호;이재효;김태국
    • Fire Science and Engineering
    • /
    • v.9 no.1
    • /
    • pp.10-19
    • /
    • 1995
  • Study on combined natural convection-radiation In partially open square enclosures filled with absorbing-anisotropic scattering media is performed. A heater block located in the enclosure causes the natural circulation of the fluid in the enclosure which results In significant in-flow of the cold fluid through the partially open wall. Four different locations of the heater are considered to observe the effect of the heater locations on the resulting heat transfer. Results obtained from the combined convection-radiation analyses show much stronger circulation of t he fluid inside the enclosure as compared to those obtained from the pure convection analyses. As the ratio of the open area is Increased, the inflow of the cold fluid and the circulation of the fluid inside the enclosure is increased causing lower fluid temperature Inside the enclosure. It is shown that the location of the heater influences the circulation and heat transfer significantly by showing stronger circulations and more uniform temperature distributions for the cases where the heater is located on the bottom wall as compared to those for the cases where the heater is located on the upper part wall of the enclosure. For pure absorbing medium, the expected circulation in the fluid is relatively week as compared to those with absorbing-scattering medium due to the smaller wall heating as the radiant heat is used to heat the fluid instead. The forward anisotropic scattering phase function is shown to increase the fluid circulation further as compared to the isotropic scattering medium.

  • PDF

RADIATIVE TRANSFER IN ANISOTROPICALLY SCATTERING MEDIUM: A MONTE CARLO APPROACH (비등방 산란 매질에서의 복사전달 문제의 몬테카를로 해법)

  • PARK CHAN;HONG SEUNG SOO
    • Publications of The Korean Astronomical Society
    • /
    • v.14 no.1
    • /
    • pp.23-32
    • /
    • 1999
  • We have developed a Monte Carlo code, which solves the problem of radiative transfer in anisotropically scattering atmosphere. The radiative code is flexible in handlings of the system geometry, the distribution of scattering particles, and the source-particle geometry. This code treats the case of highly forward throwing scattering. As performance tests, we have compared the result of Monte Carlo calculations with that of Quasi-Diffusion method for a spherically symmetric cloud model.

  • PDF

Parametric Inverse Scattering for Lossless Dispersive Media with Enhanced Robustness

  • Park, Hyoung-Jin;Lee, Sang-Seol
    • Journal of electromagnetic engineering and science
    • /
    • v.3 no.1
    • /
    • pp.57-61
    • /
    • 2003
  • The effects of high frequency noises on a perturbational inversion technique for a stratified dispersive medium are investigated in this paper. It is shown that the perturbational solution becomes unstable under high frequency noises. The physical origin of this instability is described. In order to enhance the robustness of the perturbational inverse scattering solution, a parametric inversion technique is introduced. The examples for the 2-pole and the 3-pole reflection coefficients are compared and contrasted, and improvement of the robustness of the solutions is shown.

Analysis of Electromagnetic Scattering in Lossy Medium by Boundary Element Method (경계요소법에 의한 손실매질에서의 전자파 산란 해석)

  • Lee, Taek-Kyung;Sung, Nak-Sun;Lee, Soo-Young;Ra, Jung-Woong
    • Proceedings of the KIEE Conference
    • /
    • 1987.07a
    • /
    • pp.13-17
    • /
    • 1987
  • Electromagnetic wave scattering from the two-dimensional scatterer was calculated by the Boundary Element Method (BEM). For the circular cylindrical scatterer, the BEM solutions agreed very well with the analytic solutions. The rectangular dielectric cylinder was also treated in the case of the lossy scatterer and the lossy medium.

  • PDF