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Abstract

The effects of high frequency noises on a perturbational inversion technique for a stratified dispersive medium are
investigated in this paper. It is shown that the perturbational solution becomes unstable under high frequency noises.
The physical origin of this instability is described. In order to enhance the robustness of the perturbational inverse
scattering solution, a parametric inversion technique is introduced. The examples for the 2-pole and the 3-pole reflection
coe Ticients are compared and contrasted, and improvement of the robustness of the solutions is shown.
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I. Introduction

The parametric inverse scattering theory is used to
reconstruct electron density profiles. The one-dimen-
sional potential profile V(z) is obtained based on the
reflec'ion coefficient #(k) using a parametric inversion.
This >roblem has-been investigated by both the exact
U2 and the perturbational™ inverse scattering theories.
The perturbational solution may not be robust due to a
high frequency noise since r(k) is amplified for the high
frequency during the inversion process by the dis-
persion relation. To enhance the robustness of the
perturoational inversion, we apply the parametric inver-
sion. The perturbational reconstruction solution with a
prope: bandlimitation is chosen as a trial function for
the parametric inversion.

To illustrate this, the 2-pole and 3-pole reflection
coeffizients under noisy and bandlimited conditions are
consicered. The high frequency noise added to the
reflec'ion coefficient produces extremely large values in
the perturbational inversion. The bandlimitation on the
refleciion coefficient affects both the maximum value
of V(z) and the resolution of the reconstruction.

II. Dispersion

We consider a time-harmonic wave that has the
propagzation factor of the form e ““# 7 where
and A are the angular frequency and the free-space

waverumber, respectively. Here, » is a complex
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refractive index vector and 7 is a position vector. If the
phase factor is written as

i 0)=alo)+ifw), (D

the wave propagates with an attenuation of ¢
(nepers/m) and a phase shift of 3 (rad/m). A lossless
nondispersive case can be stated as «(w)=0 and S
{(w)=w vy, where v, is a phase velocity (m/s). If 3 is
a function of @, the various dispersions take places[4],
and we consider the parametric one here.

At high frequencies, the dielectric constants become
a frequency-dependent function. Thus we treat the
molecules in the dielectrics as a dynamical system[4].
We consider the average dipole moment and polari-
zation in a linear isotropic medium excited by an
incident electric field. The forces on an electron due to

the applied field E on an electron and the friction are

F, =—qE,e™ @)
=—Rdr/dt (3)

Friction

where g and R are the charge of the electron (coulomb)
and resistance (42), respectively, and E,e™'*! is the
applied field. If we treat the negative charge cloud as
a single rigid body, the steady-state solution to the
equation of motion is'”’

7 =igE,e”™ llom(g — im)] 4

where m is the mass (Kg) of the electron and g=R/m.
The microscopic definition of the current density with
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(4) becomes
J = Ng’E,e”™ llm(g ~iw))=0'E,e ™ (5)
o'= Ng* Ilm(g — i)] (6)

where N is the number of electrons per unit volume
and ¢' is the complex conductivity. With the complex
permittivity ¢' (F/m) and o' of (6),

2 2
Kin(z) = (1)2#()8':1 Ng Iy Ng'g :l )

_Em(gz +0*)  wem(g®+w?)

where 1o is the free-space permeability (H/m) and the
real and imaginary parts of (7) can be derived from

a’-pB’° =w2u0£[1—Nq2/{£m(g2+a)2)}] (8)
208 = Nq’g llwem(g’® +w*)]. )

In a tenuous ionized gas, the damping factor g
becomes negligible since the mean path of the electron
is rather long. Thus (7) can be rewritten as

kn(o) = olue, |1 -0? 10?]” (10)

where w2= Ng*/( e m). When the electron density
becomes N(z) due to the inhomogeneous medium, the
@ . must be a function of z. Substituting (10) into (1),
the refractive index becomes

n(@) =1-0(2) /0 =1- VK] (11)

where 0 %(2)/0%= W(2)/k* and the profile potential V
(2)=gN(2)/( & omc®) with the light velocity c. If w>>w.,
the ionized medium acts like the free space. To use the
high frequency reflections, V(z) in (11) must be pro-
perly amplified during the inversion process, that causes
the instability of the inversion.

M. Perturbational Inversion

We consider the reflection by a normally incident
time-harmonic planewave from an unknown plane-
stratified inhomogeneous dispersive medium. The wave
propagates along the z in the free space for z<0 and in
the medium for z>0. The local wave number £(z) is
described by

z<0

k :
k(z):{ oo es0 (12)

where k is the free-space wavenumber. The refractive
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index is assumed to be lossless and nonmagnetic. A
unit-amplitude incident wave illuminates the medium
from the left-half space, and a reflected wave with the
amplitude of the complex reflection coefficient r(k)
propagates in the negative z direction. The refractive
index is to be determined from r(k) which is related to
the electron density profile.

The electrical characteristics of the profile to be
reconstructed are defined by V(z) where V(z) is zero
for z<0. The potential function is related to the relative
dielectric permittivity.

g,(z,k)=1-V(2)/k* (13)

For the time-harmonic plane waves, the transverse
component of E(z,k) satisfies the wave equation for all
z, and the wave equation becomes the Schrofinger
equation under the dispersion relation given in (13).
Using the one-dimensional free-space Green's function,
the inhomogeneous solution of the equation becomes

B(z, B = [ V(2)E(z,HG(z,7)dz, (14)
for z<0, where
G(z, z)y=ie"" 2k (15)

By using Born approximation inside the medium,
only one unknown remains in (14) where z>0. Then
the total solution and the reflection coefficients become

E(z, B =%+ [ fngAik e Viser 2 )d2’ ™ (16)
and

R = fo‘”z_zk eV o 2)d2' for z<0 (7

where V... is the perturbation potential. Defining a new
frequency variable, p=—2ik, (17) yields

A=k [V (e Pde= L LIVl2] (18)

where L denotes the Laplace transform. Inversion of
(18) produces a perturbational inversion as

V,..(2)=L"[- pr(p)] (19)

where L' denotes the inverse Laplace transform opera-
tor. Using Bromwitch integral, (19) can be expressed in
k as

Viyer 2) = 2 f_ _kr(ke "/ (20)
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This approximation is valid for small potential or in
the high frequency regimem. We note that the pr(p)
term in (19) may produce instability in the reconstruc-
tion i there is a high frequency noise in r(p).

To improve the robustness of the perturbational
inversion under the bandlimited and noisy condition,
the V(z) is reconstructed using the perturbation inver-
sion given by (20) where r(k) has additive random
noises as

Fo (i) = rge (k) + 1y () 21
r(B)y=r, k) +r,, k) (22)

where ¥ ez, 7 E, 7R, 7w and are the exact real, the
exact imaginary, the noise real, and the noise imaginary
reflection coefficients, respectively. The noise is gene-
rated by random process as

rve k)= NAcosp(k)] (23)
ry k) = NA sin[p(k)] 24)

where NA is the noise amplitude which is a constant,
and 3 (k)s are random numbers with uniform prob-
ability density ranging from zero to 2z . The exact
reflection coefficients for the following two cases are
given by [3]

7(E)spore = (4k k) 1(p + 2k, )(p + 2ik,)] (25)
P(P)spoie = ik kk) /(P + 21k, ) p + 2ik,)(p + 2ik,)]  (26)

where ki(i=1, 2, 3) designates the pole locations in the
complex k& plane. To investigate the effects of the
bandlimited and noisy condition in the perturbational
inversion, we use the reconstruction of the potentials
for th> 2-pole and 3-pole noiseless cases shown in Fig.
1, tha: provides a useful approximation. However, the

V(z) V(z)
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| |
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Fig. |. Exact and perturbational reconstructions: Solid

line (Exact solution), Dotted line(k;=4, NA=0),
Dashed line(kr = 16, NA=0.1).
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Fig. 2. Maximum values of perturbationally reconstructed
potential for 2-pole and 3-pole causes under
noisy and bandlimited conditions: Solid line
(2-pole case), Dotted line(3-pole case).

reconstructed potential for the noisy 2-pole and 3-pole
cases becomes instable when ks is chosen relatively
high (kr=16). If ks is decreased too much, the amplitude
of the reconstructed potential will clearly become
smaller. Hence, for the trade-off between the instability
and the resolution, the kr must be chosen carefully in
the place where the slope of the magnitude of the r(k)
is approximately zero. However, at the place noise
becomes dominant. The resolution has to be decreased
due to the noise filtering.

The amount of noise is given using the signal-to-
noise ratio (SNR) as

snr=L [ reolar) | 1 [ "inara 27)

where rg(k) is the exact value, and the denominator of
the SNR becomes (NA)zkf since NA is a constant. This
SNR will increase if the NA and/or ks is decreased.
Therefore, applying low-pass filtering improves the
SNR. As shown in Fig. 2, the maximum potential
Viersmax increase rapidly as increasing of noises.

IV. Parametric Inversion

Since a parametric inversion requires a trial function,
we use a properly bandlimited perturbational reconst-
ruction solution as a trial function. Two parameters are
introduced to the trial function. They will be deter-
mined by optimizing a root mean square error (RMSE).
Mathematically, they are coordinate stretches in the x-y
directions. Since reconstruction errors in both height
and longitudinal placement are not uniform over the
entire profile, we introduce more parameters such as

fv) :go +C1V+€2V2 AR (28)

f(Z)=770+7712+772 Zz+ ..... . (29)
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For simplicity, we use only 2 parameters & and 7,
in (28) and (29) which are denoted by ¢ and 7.

A parametric inversion is based on the concept that
the reflection data with undetermined parameters are
compared with the exact or measured reflection. Then,
the corresponding reflection coefficient is compared
with measured data by RMSE. This process is repeated
until the optimum value of ¢ and 7 are obtained.
The coordinates-stretched expression is given by

Vp (Z)m+] = Cvp (nz),,. (30)

where m is the number of iteration and 7, is a
parametric solution. By using the perturbation solution,
a trial function is

Vi D=4 [l 71 (B cos (2%) — re (B sin 21k (31)
which is obtained from (20) with the causality con-
dition. For the simulation, we choose limit of inte-
gration with the k; instead of infinity.

The trial function is used to get r(k) in the Riccati
equation:

dr, /dz =—k[r,(r, =)= (2)r, (r, = D)] (32)

dr, /dz = -0.5k[((1-r)? =2} +e, (DA + 1) - 17} (33)

with e zk)=1~ V(z)/kz. The reflection coefficient
ro(k) is calculated by the Riccati equation, and we have
the RMSE as

ky
RMSE = 3 [ = 70)* + (ry =101 (4)

The RMSE is presented in Fig. 3 for the 2-pole and
3-pole cases.

Since the exact profiles are available from [1], [2]
for the noiseless 2-pole and 3-pole cases, it allows us
to calculate the following profile-to-error ratio (PER):

PER =[ [ V2 e &) 1 [ J; Ve Vied 2] (35)

where Ve 18 the exact potential and Vieon is the
potential obtained by the perturbational or parametric
inversion. The PER's for the 2-pole and 3-pole cases
are shown in Fig. 4. It is evident that the large PER
becomes the better the reconstruction process. Therefore
we see that the parametric inversion improves the
reconstruction obtained from the perturbational one.

V. Conclusion
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Fig. 3. RMSE.
(a) NA=0 : Solid line( » =2.225), Dashed line
(7 =1.025), Dotted line( 7 =3.5).
(b) NA=0 : Solid line(»=1.75), Dashed line
(7=1.375), Dotted line( 7 =3.5).
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Fig. 4. Profile-to-error ratio : Solid line(perturbational
inversion), Dotted line(parametric inversion).

It has been known that the perturbational inversion
gives an excellent solution for the general shape of the
potential function of the one-dimensional, inhomoge-
neous, lossless, dispersive, nonmagnetic media. How-
ever, it becomes unstable with high frequency noise
added to the reflection coefficient. Physically, this
instability comes from the fact that a wave propagates
without much reflection if the wavenumber becomes
much large in the dispersion relation.

To circumvent this instability, we have applied a
parametric inversion technique and chosen a pertur-
bational reconstruction solution as a trial function.
Subsequently, the coordinate stretches are performed to
optimize the reconstruction. We have shown that the
proposed technique improves the robustness of a per-
turbational reconstruction. This improvement has been
calculated quantitatively using the PER.
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