• Title/Summary/Keyword: scattering layer

Search Result 401, Processing Time 0.03 seconds

A Simple Microwave Backscattering Model for Vegetation Canopies

  • Oh Yisok;Hong Jin-Young;Lee Sung-Hwa
    • Journal of electromagnetic engineering and science
    • /
    • v.5 no.4
    • /
    • pp.183-188
    • /
    • 2005
  • A simple microwave backscattering model for vegetation canopies on earth surfaces is developed in this study. A natural earth surface is modeled as a two-layer structure comprising a vegetation layer and a ground layer. This scattering model includes various scattering mechanisms up to the first-order multiple scattering( double-bounce scattering). Radar backscatter from ground surface has been modeled by the polarimetric semi-empirical model (PSEM), while the backscatter from the vegetation layer modeled by the vector radiative transfer model. The vegetation layer is modeled by random distribution of mixed scattering particles, such as leaves, branches and trunks. The number of input parameters has been minimized to simplify the scattering model. The computation results are compared with the experimental measurements, which were obtained by ground-based scatterometers and NASA/JPL air-borne synthetic aperture radar(SAR) system. It was found that the scattering model agrees well with the experimental data, even though the model used only ten input parameters.

Enhancement of the Light Harvesting of Dye-sensitized Solar Cell by Inserting Scattering Layer (중간 광전극에 삽입된 산란층에 의한 염료감응 태양전지의 광수집 성능 향상)

  • Nam, Jung-Gyu;Kim, Bum-Sung;Lee, Jai-Sung
    • Journal of Powder Materials
    • /
    • v.16 no.5
    • /
    • pp.305-309
    • /
    • 2009
  • The effect of light scattering layers (400 nm, TiO$_2$ particle) of 4 $\mu$m thickness on the dye-sensitized solar cell has been investigated with a 12 $\mu$m thickness of photo-anode (20 nm, TiO$_2$ particle). Two different structures of scattering layers (separated and back) were applied to investigate the light transmitting behaviors and solar cell properties. The light transmittance and cell efficiency significantly improved with inserting scattering layers. The back scattering layer structure had more effective transmitting behavior, but separated scattering layer (center: 2 $\mu$m, back: 2 $\mu$m) structure (9.83% of efficiency) showing higher efficiency (0.6%), short circuit current density (0.26 mA/cm$^2$) and fill factor (0.02). The inserting separating two scattering layers improved the light harvesting, and relatively thin back scattering layer (2 $\mu$m of thickness) minimized interruption of ion diffusion in liquid electrolyte.

The Performance of Dye-sensitized Solar Cell Using Light-scattering Layer (광산란층을 이용한 염료감응형 태양전지의 특성)

  • Eom, Tae-Sung;Choi, Hyung-Wook
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.7
    • /
    • pp.558-562
    • /
    • 2012
  • As an alternative energy, Dye-sensitized solar cells (DSSCs) have received much attention due to low cost manufacturing procedure and high energy consumption rate. Incorporating scattering centers in the nanocrystalline photoanode or additional scattering layers on the nanocrystalline photoanode is an effective way to enhance the light harvest efficiency of the photoanode and the performance of dye-sensitized solar cells (DSSCs). The light scattering abilities of these scattering layers also depend on the relative sizes and phase of the particles in the layers. A higher surface area is normally obtained using large particle sizes. Therefore, transparent high surface area $TiO_2$ layers and an additional scattering layer consisting of $TiO_2$-Rutile 500 nm paste with relatively larger particles are attractive. In this work, we investigates the applicability of a hybrid $TiO_2$ electrode (or a working electrode with a light scattering layer) in a DSSCs. We fabrication various thin film using $TiO_2$ paste 20 nm and $TiO_2$ paste 500 nm. As a result, the efficiency of the a single structure thin film was 3.35% and the efficiency as scattering layer of hybrid structure thin film was 4.36%, 4.73%.

Light Scattering Amplification on Dye Sensitized Solar Cells Assembled by Hollyhock-shaped CdS-TiO2 Composites

  • Lee, Ga-Young;Lee, Hu-Ryul;Um, Myeong-Heon;Kang, Mi-Sook
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.9
    • /
    • pp.3043-3047
    • /
    • 2012
  • To investigate the scattering layer effect of a $TiO_2$ multilayer in dye-sensitized solar cells (DSSCs), we designed a new DSSC system, assembled with a CdS-$TiO_2$ scattering layer electrode. A high-magnification SEM image exhibited hollyhock-like particles with a width of 1.5-2.0 ${\mu}m$ that were aggregated into 10-nm clumps in a hexagonal petal shape. The efficiency was higher in the DSSC assembled with a CdS-$TiO_2$ scattering layer than in the DSSC assembled with $TiO_2$-only layers, due to the decreased resistance in electrochemical impedance spectroscopy (EIS). The short-circuit current density ($J_{sc}$) was increased by approximately 7.26% and the open-circuit voltage ($V_{oc}$) by 2.44% over the 1.0 wt % CdS-$TiO_2$ composite scattering layer and the incident photon-to-current conversion efficiency (IPCE) in the maximum peak was also enhanced by about 5.0%, compared to the DSSC assembled without the CdS-$TiO_2$scattering layer.

Improvement of performance of dye-sensitized solar cells using $Nb_2O_5$ light scattering layer ($Nb_2O_5$ light scattering layer를 사용한 염료감응형 태양전지 성능 개선)

  • Choi, Seok-Won;Son, Min-Kyu;Choi, Jin-Ho;Kim, Soo-Kyoung;Kim, Byung-Man;Kim, Hee-Je
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1503-1504
    • /
    • 2011
  • 염료 감응형 태양전지(Dye-sensitized Solar Cells, DSC)에서 고효율화를 위해 light scattering layer가 반도체 산화물 $TiO_2$와 함께 많이 사용되고 있다. 이것은 light scattering layer에 의해 빛의 이용률을 증가시킴으로써 DSC의 성능을 증대 시킬 수 있기 때문이다. 따라서 본 연구에서는 입자크기가 크고 반사율이 좋은 $Nb_2O_5$를 light scattering layer로 사용하여 $TiO_2$ layer를 통과한 빛을 다시 반사시켜 빛의 이용률을 증대시킴으로써 DSC 성능면에서 light scattering layer를 사용하지 않았을 때보다 전류밀도와 효율을 크게 증가시키고자 하였다. 그 결과 $V_{OC}$는 0.74V, $J_{SC}$는 17.95mA/$cm^2$, FF는 0.63, ${\Box}$는 8.38%로 기존의 DSC 보다 전류밀도가 약 30%, 효율이 약 31% 증가한 좋은 결과를 얻을 수 있었다.

  • PDF

A study of the light scattering effect depending on $TiO_2$ particle size to a dye-sensitized solar cell (염료감응형 태양전지의 $TiO_2$ 입자 크기에 따른 광분산 효과 연구)

  • Son, Min-Kyu;Seo, Hyun-Woong;Lee, Kyoung-Jun;Jang, Jin-Ju;Hong, Ji-Tae;Kim, Hee-Je
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.128-130
    • /
    • 2008
  • One of methods to increase the efficiency of a dye-sensitized solar cell(DSC) is the effective usage of the incident light. It can be controlled by using a light scattering layer. The light scattering effect makes that the optical path length of incident light to DSC increases. And then, the photocurrent and the efficiency is increased because of the increase of dye adsorption and the abundant amount of the light. In this study, we apply the light scattering layer to DSC by using two $TiO_2$ pastes that have different particle sizes. As a result, the photocurrent increases and the total efficiency is also increases in the case of using large-sized $TiO_2$ particle as the light scattering layer.

  • PDF

Measurement of vertical migration speed of Sound Scattering Layer using an bottom mooring type Acoustic Doppler Current Profiler (해저설치형 음향도플러유향유속계를 이용한 음향산란층의 연직이동속도 측정)

  • Jo, Hyeon-Jeong;Lee, Kyoung-Hoon
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.46 no.4
    • /
    • pp.449-457
    • /
    • 2010
  • This study shows that the vertical migration speed of sound scattering layers (SSLs), which is distributed in near Funka Bay, were measured by 3D velocity components acquired from a bottom moorng ADCP. While the bottom mooring type has a problem to measure the velocity vectors of sound scattering layer distributed near to surface, both the continuous vertical migration patterns and variability of backscatterers were routinely investigated as well. In addition, the velocity vectors were compared with the vertical migration velocity estimated from echograms of Mean Volume Backscattering Strength, and estimated to produce observational bias due to SSLs which is composed of backscatterers such as euphausiids, nekton, and fishes have swimming ability.

Investigation of Device Characteristics on the Mechanical Film Stress of Contact Etch Stop Layer in Nano-Scale CMOSFET (Nano-Scale CMOSFET에서 Contact Etch Stop Layer의 Mechanical Film Stress에 대한 소자특성 분석)

  • Na, Min-Ki;Han, In-Shik;Choi, Won-Ho;Kwon, Hyuk-Min;Ji, Hee-Hwan;Park, Sung-Hyung;Lee, Ga-Won;Lee, Hi-Deok
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.4
    • /
    • pp.57-63
    • /
    • 2008
  • In this paper, the dependence of MOSFET performance on the channel stress is characterized in depth. The tensile and compressive stresses are applied to CMOSFET using a nitride film which is used for the contact etch stop layer (CESL). Drain current of NMOS and PMOS is increased by inducing tensile and compressive stress, respectively, due to the increased mobility as well known. In case of NMOS with tensile stress, both decrease of the back scattering ratio ($\tau_{sat}$) and increase of the thermal injection velocity ($V_{inj}$) contribute the increase of mobility. It is also shown that the decrease of the $\tau_{sat}$ is due to the decrease of the mean free path ($\lambda_O$). On the other hand, the mobility improvement of PMOS with compressive stress is analyzed to be only due to the so increased $V_{inj}$ because the back scattering ratio is increased by the compressive stress. Therefore it was confirmed that the device performance has a strong dependency on the channel back scattering of the inversion layer and thermal injection velocity at the source side and NMOS and PMOS have different dependency on them.

Dynamic Response of Charge Transfer and Recombination at Various Electrodes in Dye-sensitized Solar Cells Investigated Using Intensity Modulated Photocurrent and Photovoltage Spectroscopy

  • Kim, Gyeong-Ok;Ryu, Kwang-Sun
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.469-472
    • /
    • 2012
  • Intensity modulated photocurrent spectroscopy and intensity modulated photovoltage spectroscopy were investigated to measure the dynamic response of charge transfer and recombination in the standard, $TiCl_4$-treated and the combined scattering layer electrode dye-sensitized solar cells (DSSCs). IMPS and IMVS provided transit time ($\tau_n$), lifetime ($\tau_r$), diffusion coefficient ($D_n$) and effective diffusion length ($L_n$). These expressions are derived that generation, collection, and recombination of electrons in a thin layer nanocrystalline DSSC under conditions of steady illumination and with a superimposed small amplitude modulation. In this experimental, IMPS/IMVS showed that the main effect of $TiCl_4$ treatment is to suppress the recombination of photogenerated electrons, thereby extending their lifetime. And the Diffusion coefficient of combined scattering layer electrode is $6.10{\times}10^{-6}$ higher than that of the others, resulting in longer diffusion length.

Improved Energy Conversion Efficiency of Dye-sensitized Solar Cells Fabricated using Open-ended TiO2 Nanotube Arrays with Scattering Layer

  • Rho, Won-Yeop;Chun, Myeoung-Hwan;Kim, Ho-Sub;Hahn, Yoon-Bong;Suh, Jung Sang;Jun, Bong-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.4
    • /
    • pp.1165-1168
    • /
    • 2014
  • We prepared dye-sensitized solar cells (DSSCs) with enhanced energy conversion efficiency using open-ended $TiO_2$ nanotube arrays with a $TiO_2$ scattering layer. As compared to closed-ended $TiO_2$ nanotube arrays, the energy conversion efficiency of the open-ended $TiO_2$ nanotube arrays was increased from 5.63% to 5.92%, which is an enhancement of 5.15%. With the $TiO_2$ scattering layer, the energy conversion efficiency was increased from 5.92% to 6.53%, which is an enhancement of 10.30%. After treating the open-ended $TiO_2$ nanotube arrays with $TiCl_4$, the energy conversion efficiency was increased from 6.53% to 6.89%, a 5.51% enhancement, which is attributed to improved light harvesting and increased dye adsorption.