DOI QR코드

DOI QR Code

Light Scattering Amplification on Dye Sensitized Solar Cells Assembled by Hollyhock-shaped CdS-TiO2 Composites

  • Lee, Ga-Young (Department of Chemistry, College of Science, Yeungnam University) ;
  • Lee, Hu-Ryul (Department of Chemistry, College of Science, Yeungnam University) ;
  • Um, Myeong-Heon (Department of Chemical Engineering, College of Engineering, Kongju National University) ;
  • Kang, Mi-Sook (Department of Chemistry, College of Science, Yeungnam University)
  • Received : 2012.05.14
  • Accepted : 2012.06.19
  • Published : 2012.09.20

Abstract

To investigate the scattering layer effect of a $TiO_2$ multilayer in dye-sensitized solar cells (DSSCs), we designed a new DSSC system, assembled with a CdS-$TiO_2$ scattering layer electrode. A high-magnification SEM image exhibited hollyhock-like particles with a width of 1.5-2.0 ${\mu}m$ that were aggregated into 10-nm clumps in a hexagonal petal shape. The efficiency was higher in the DSSC assembled with a CdS-$TiO_2$ scattering layer than in the DSSC assembled with $TiO_2$-only layers, due to the decreased resistance in electrochemical impedance spectroscopy (EIS). The short-circuit current density ($J_{sc}$) was increased by approximately 7.26% and the open-circuit voltage ($V_{oc}$) by 2.44% over the 1.0 wt % CdS-$TiO_2$ composite scattering layer and the incident photon-to-current conversion efficiency (IPCE) in the maximum peak was also enhanced by about 5.0%, compared to the DSSC assembled without the CdS-$TiO_2$scattering layer.

Keywords

References

  1. Ni, Y.; Ma, X.; Hong, J.; Xu, Z. Mater. Lett. 2004, 58, 2754. https://doi.org/10.1016/j.matlet.2004.04.014
  2. Xia, Q.; Chen, X.; Zhao, K.; Liu, J. Mater. Chem. Phys. 2008, 111, 98. https://doi.org/10.1016/j.matchemphys.2008.03.020
  3. Thongtem, T.; Phuruangrat, A.; Thongtem, S. Mater. Lett. 2007, 61, 3235. https://doi.org/10.1016/j.matlet.2006.11.040
  4. Qingqing, W.; Gaoling, Z.; Gaorong, H. Mater. Lett. 2005, 59, 2625. https://doi.org/10.1016/j.matlet.2005.04.004
  5. Li, C.; Yuan, J.; Han, B.; Shangguan, W. Inter. J. Hydrogen Energy 2011, 36, 4271. https://doi.org/10.1016/j.ijhydene.2011.01.022
  6. Ghows, N.; Entezari, M. H. Ultrasonics Sonochem. 2011, 18, 629. https://doi.org/10.1016/j.ultsonch.2010.08.003
  7. Thongtem, T.; Phuruangrat, A.; Thongtem, S. Ceramics Inter. 2009, 35, 2817. https://doi.org/10.1016/j.ceramint.2009.03.024
  8. Zhong, S.; Zhang, L.; Huang, Z.; Wang, S. Appl. Surf. Sci. 2011, 257, 2599. https://doi.org/10.1016/j.apsusc.2010.10.029
  9. Maurya, A.; Chauhan, P. Mater. Chracterization 2011, 62, 382. https://doi.org/10.1016/j.matchar.2011.01.014
  10. Qingqing, W.; Gang, X.; Gaorong, H. J. Solid State Chem. 2005, 178, 2680. https://doi.org/10.1016/j.jssc.2005.06.005
  11. Niitsoo, O.; Sarkar, S. K.; Pejoux, C.; Rühle, S.; Cahen, D.; Hodes, G. J. Photochem. Photobiol. A: Chem. 2006, 181, 306. https://doi.org/10.1016/j.jphotochem.2005.12.012
  12. Zhu, Q.; Chen, J.; Xu, M.; Tian, S.; Pan, H.; Qian, J.; Zhou, X. Solid State Sci. 2011, 13, 1299. https://doi.org/10.1016/j.solidstatesciences.2011.03.025
  13. Jiang, X.; Chen, F.; Qiu, W.; Yan, Q.; Nan, Y.; Xu, H.; Yang, L.; Chen, H. Sol. Energy Mater. Sol. Cells 2011, 94, 2223.
  14. Prabakar, K.; Seo, H.; Son, M.; Kim, H. Mater. Chem. Phys. 2009, 117, 26. https://doi.org/10.1016/j.matchemphys.2009.05.056
  15. Lee, J.-K.; Jeong, B.-H.; Jang, S.-I.; Kim, Y.-G.; Jang, Y.-W.; Lee, S.-B.; Kim, M.-R. J. Ind. Eng. Chem. 2009, 15, 724. https://doi.org/10.1016/j.jiec.2009.09.053
  16. Kim, G.-O.; Kim, K.-W.; Cho, K.-K.; Ryu, K.-S. Appl. Chem. Eng. 2011, 22, 190.
  17. Xiao, J.; Li, Y.; Jiang, A. J. Mater. Sci., Technol. 2011, 27, 403. https://doi.org/10.1016/S1005-0302(11)60082-0
  18. Chae, J.; Kang, M. J. Power Sources 2011, 196, 4143. https://doi.org/10.1016/j.jpowsour.2010.12.109
  19. Park, N. G.; Schlichthorl, G.; can de Lagemaat, J.; Cheong, H. M.; Mascarenhas, A.; Frank, A. J. J. Phys. Chem. B 1999, 103, 3308. https://doi.org/10.1021/jp984529i
  20. Franco, G.; Gehring, J.; Peter, L. M.; Ponomarev, E. A.; Uhlendorf, I. J. Phys. Chem. B 1999, 103, 692. https://doi.org/10.1021/jp984060r
  21. Schlichthorl, G.; Park, N. G.; Frank, A. J. J. Phys. Chem. B 1999, 103, 782.

Cited by

  1. Effect of bath temperature on the performance of ZnO nanorod-based thin film solar cells vol.15, pp.9, 2013, https://doi.org/10.1007/s11051-013-1926-5
  2. Light-penetration and light-scattering effects in dye-sensitised solar cells vol.38, pp.12, 2014, https://doi.org/10.1039/C4NJ01459F
  3. nanostructures based dye sensitized solar cells vol.18, pp.12, 2016, https://doi.org/10.1039/C5CP06754E
  4. Efficient bifacial dye-sensitized solar cells through disorder by design vol.4, pp.5, 2016, https://doi.org/10.1039/C5TA10091G
  5. Photovoltaic properties of Cassia fistula flower extract based dye-sensitized solar cells vol.13, pp.3, 2012, https://doi.org/10.1117/1.jnp.13.036007
  6. CdS Q-Dot-Impregnated TiO2-B Nanowire-Based Photoanodes for Efficient Photovoltaic Conversion in ‘Q-Dot Co-sensitized DSSC’ vol.35, pp.9, 2012, https://doi.org/10.1021/acs.energyfuels.1c00539