DOI QR코드

DOI QR Code

The Performance of Dye-sensitized Solar Cell Using Light-scattering Layer

광산란층을 이용한 염료감응형 태양전지의 특성

  • Eom, Tae-Sung (Department of Electrical Engineering, Gachon University) ;
  • Choi, Hyung-Wook (Department of Electrical Engineering, Gachon University)
  • 엄태성 (가천대학교 전기공학과) ;
  • 최형욱 (가천대학교 전기공학과)
  • Received : 2012.06.15
  • Accepted : 2012.06.22
  • Published : 2012.07.01

Abstract

As an alternative energy, Dye-sensitized solar cells (DSSCs) have received much attention due to low cost manufacturing procedure and high energy consumption rate. Incorporating scattering centers in the nanocrystalline photoanode or additional scattering layers on the nanocrystalline photoanode is an effective way to enhance the light harvest efficiency of the photoanode and the performance of dye-sensitized solar cells (DSSCs). The light scattering abilities of these scattering layers also depend on the relative sizes and phase of the particles in the layers. A higher surface area is normally obtained using large particle sizes. Therefore, transparent high surface area $TiO_2$ layers and an additional scattering layer consisting of $TiO_2$-Rutile 500 nm paste with relatively larger particles are attractive. In this work, we investigates the applicability of a hybrid $TiO_2$ electrode (or a working electrode with a light scattering layer) in a DSSCs. We fabrication various thin film using $TiO_2$ paste 20 nm and $TiO_2$ paste 500 nm. As a result, the efficiency of the a single structure thin film was 3.35% and the efficiency as scattering layer of hybrid structure thin film was 4.36%, 4.73%.

Keywords

References

  1. B. O'Regan and M. Gratzel, Nature, 353, 737 (1991). https://doi.org/10.1038/353737a0
  2. M. K. Nazeeruddi, A. Kay, I. Rodicio, R. Humpbry-Baker, E. Miiller, P. Liska, N. Vlachopoulos, and M. Gratzel, J. Am. Chem. Soc., 115, 6382 (1993). https://doi.org/10.1021/ja00067a063
  3. M. Gratzel, Inorg. Chem., 44, 6841 (2005). https://doi.org/10.1021/ic0508371
  4. M. Gratzel, Nature, 414, 338 (2001). https://doi.org/10.1038/35104607
  5. K. Hara, Y. Tachibana, Y. Ohga, A. Shinpo, S. Suga, K. Sayama, H. Sugihara, and H. Arakawa, Sol. Energ. Mat. Sol. Cells, 77, 89 (2003). https://doi.org/10.1016/S0927-0248(02)00460-9
  6. H. Matsui, K. Okada, and T. Kawashima, T. Ezure, N. Tanabe, R. Kawno, and M. Watanabe, J. Photoch. Photobio. A: Chemistry, 164, 129 (2004). https://doi.org/10.1016/j.jphotochem.2003.12.022
  7. S. S. Kim, Y. C. Nah, Y. Y. Noh, J. Jo, and D. Y. Kim, Electrochim. Acta, 51, 3814 (2006). https://doi.org/10.1016/j.electacta.2005.10.047
  8. M. Gratzel, Prog. Photovoltaics: Res. Appl., 8, 171 (2000). https://doi.org/10.1002/(SICI)1099-159X(200001/02)8:1<171::AID-PIP300>3.0.CO;2-U
  9. F. C. Krebs and M. Biancardo, Sol. Energ. Mat. Sol. Cells, 90, 142 (2006). https://doi.org/10.1016/j.solmat.2005.02.006
  10. S. Hore, C. Vetter, R. Kern, H. Smit, and A. Hinsch., Sol. Energ. Mat. Sol. Cells, 90, 1176 (2006). https://doi.org/10.1016/j.solmat.2005.07.002
  11. J. Ferber and J. Luther., Sol. Energ. Mat. Sol. Cells, 54, 265 (1998). https://doi.org/10.1016/S0927-0248(98)00078-6
  12. Clifford, J. N. E. Palomares, Md. K. Nazeeruddin, M. Gratzel, J. Nelson, X. Li, N. J. Long, and J. R. Durrant, J. Am. Chem. Soc., 126, 5225 (2004). https://doi.org/10.1021/ja039924n
  13. A. Ishimaru, Wave Propagation and Scattering in Random Media (The Institute of Electrical and Electronics Engineers, Inc. New York and Oxford University Press, 1978)
  14. H. J. Koo, J. Park, B. Yoo, K. Yoo, K. Kim, and N. G. Park, Inorg. Chim. Acta, 361, 677 (2008). https://doi.org/10.1016/j.ica.2007.05.017
  15. S. Ito, M. K. Nazreeruddin, M. Gratzel, T. Mizuno, Atsushi, Tanaka, and T. Koyanagi, IJP, 517609, 8 (2009).