In this paper, to merge whole 3D information of an occluded body from view point, the new image merging algorithm is introduced after obtaining images of body on the turn table from 4 directions. The two images represented by polygon meshes are merged using weight bipartite matching method with different weights according to coordinates and axes based on minimum distance since two images merged don't present abrupt variation of 3D coordinates and scan direction is one direction. To obtain entire 3D information of body, these steps are repeated 3 times since the obtained images are 4. This proposed method has advantage 200 - 300% searching time reduction rather than conventional branch and bound, dynamic programming, and hungarian method though the matching accuracy rate is a little bit less than these methods.
Similarity matching in video database is of growing importance in many new applications such as video clustering and digital video libraries. In order to provide efficient access to relevant data in large databases, there have been many research efforts in video indexing with diverse spatial and temporal features. however, most of the previous works relied on sequential matching methods or memory-based inverted file techniques, thus making them unsuitable for a large volume of video databases. In order to resolve this problem, this paper proposes an effective and scalable indexing technique using a trie, originally proposed for string matching, as an index structure. For building an index, we convert each frame into a symbol sequence using a window order heuristic and build a disk-resident trie from a set of symbol sequences. For query processing, we perform a depth-first search on the trie and execute a temporal segmentation. To verify the superiority of our approach, we perform several experiments with real and synthetic data sets. The results reveal that our approach consistently outperforms the sequential scan method, and the performance gain is maintained even with a large volume of video databases.
According to recent technical advances on sensors and mobile devices, processing of data streams generated by the devices is becoming an important research issue. The data stream of real values obtained at continuous time points is called streaming time-series. Due to the unique features of streaming time-series that are different from those of traditional time-series, similarity matching problem on the streaming time-series should be solved in a new way. In this paper, we propose an efficient algorithm for streaming time- series matching problem that supports normalization transform. While the existing algorithms compare streaming time-series without any transform, the algorithm proposed in the paper compares them after they are normalization-transformed. The normalization transform is useful for finding time-series that have similar fluctuation trends even though they consist of distant element values. The major contributions of this paper are as follows. (1) By using a theorem presented in the context of subsequence matching that supports normalization transform[4], we propose a simple algorithm for solving the problem. (2) For improving search performance, we extend the simple algorithm to use $k\;({\geq}\;1)$ indexes. (3) For a given k, for achieving optimal search performance of the extended algorithm, we present an approximation method for choosing k window sizes to construct k indexes. (4) Based on the notion of continuity[8] on streaming time-series, we further extend our algorithm so that it can simultaneously obtain the search results for $m\;({\geq}\;1)$ time points from present $t_0$ to a time point $(t_0+m-1)$ in the near future by retrieving the index only once. (5) Through a series of experiments, we compare search performances of the algorithms proposed in this paper, and show their performance trends according to k and m values. To the best of our knowledge, since there has been no algorithm that solves the same problem presented in this paper, we compare search performances of our algorithms with the sequential scan algorithm. The experiment result showed that our algorithms outperformed the sequential scan algorithm by up to 13.2 times. The performances of our algorithms should be more improved, as k is increased.
Transactions of the Korean Society of Mechanical Engineers A
/
v.21
no.10
/
pp.1551-1560
/
1997
This study is devoted to the detection of the 3-dimensional point obstacles on the plane by using accumulated scan line images. The proposed accumulating only one scan line allow to process image at real time. And the change of motion of the feature in image is small because of the short time between image frames, so it does not take much time to track features. To obtain recursive optimal obstacles position and robot motion along to the motion of camera, Kalman filter algorithm is used. After using Kalman filter in case of the fixed environment, 3-dimensional obstacles point map is obtained. The position and motion of moving obstacles can also be obtained by pre-segmentation. Finally, to solve the stereo ambiguity problem from multiple matches, the camera motion is actively used to discard mis-matched features. To get relative distance of obstacles from camera, parallel stereo camera setup is used. In order to evaluate the proposed algorithm, experiments are carried out by a small test vehicle.
Kang, Nam-woo;Sa, Se-Won;Ryu, Min Woo;Oh, Sangmin;Lee, Chanwoo;Cho, Hunhee;Park, Insung
Korean Journal of Construction Engineering and Management
/
v.22
no.3
/
pp.40-51
/
2021
MLS (Mobile Laser Scanning) which is a scanning method done by moving the LiDAR (Light Detection and Ranging) is widely employed to capture indoor PCD (Point Cloud Data) for floor plan generation in the AEC (Architecture, Engineering, and Construction) industry. The movement and rotation of LiDAR in the scanning phase cause deformation (i.e. skew) of PCD and impose a significant impact on quality of output. Thus, a de-skewing method is required to increase the accuracy of geometric representation. De-skewing methods which use position and pose information of LiDAR collected by IMU (Inertial Measurement Unit) have been mainly developed to refine the PCD. However, the existing methods have limitations on de-skewing PCD without IMU. In this study, a novel algorithm for de-skewing 2D PCD captured from MLS without IMU is presented. The algorithm de-skews PCD using scan matching between points captured from adjacent scan positions. Based on the comparison of the deskewed floor plan with the benchmark derived from TLS (Terrestrial Laser Scanning), the performance of proposed algorithm is verified by reducing the average mismatched area 49.82%. The result of this study shows that the accurate floor plan is generated by the de-skewing algorithm without IMU.
We propose a single Index approach for subsequence matching that supports moving average transform of arbitrary order in time-series databases. Using the single index approach, we can reduce both storage space overhead and index maintenance overhead. Moving average transform is known to reduce the effect of noise and has been used in many areas such as econometrics since it is useful in finding overall trends. However, the previous research results have a problem of occurring index overhead both in storage space and in update maintenance since tile methods build several indexes to support arbitrary orders. In this paper, we first propose the concept of poly-order moving average transform, which uses a set of order values rather than one order value, by extending the original definition of moving average transform. That is, the poly-order transform makes a set of transformed windows from each original window since it transforms each window not for just one order value but for a set of order values. We then present theorems to formally prove the correctness of the poly-order transform based subsequence matching methods. Moreover, we propose two different subsequence matching methods supporting moving average transform of arbitrary order by applying the poly-order transform to the previous subsequence matching methods. Experimental results show that, for all the cases, the proposed methods improve performance significantly over the sequential scan. For real stock data, the proposed methods improve average performance by 22.4${\~}$33.8 times over the sequential scan. And, when comparing with the cases of building each index for all moving average orders, the proposed methods reduce the storage space required for indexes significantly by sacrificing only a little performance degradation(when we use 7 orders, the methods reduce the space by up to 1/7.0 while the performance degradation is only $9\%{\~}42\%$ on the average). In addition to the superiority in performance, index space, and index maintenance, the proposed methods have an advantage of being generalized to many sorts of other transforms including moving average transform. Therefore, we believe that our work can be widely and practically used in many sort of transform based subsequence matching methods.
This thesis explores the problem of reconstructing a three-dimensional(3D) scene given a set of images or image sequences of the scene. It describes efficient methods for the 3D reconstruction of static and dynamic scenes from stereo images, stereo image sequences, and images captured from multiple viewpoints. Novel methods for image-based and volumetric modelling approaches to 3D reconstruction are presented, with an emphasis on the development of efficient algorithm which produce high quality and accurate reconstructions. For image-based 3D reconstruction a novel energy minimisation scheme, Iterated Dynamic Programming, is presented for the efficient computation of strong local minima of discontinuity preserving energyy functions. Coupled with a novel morphological decomposition method and subregioning schemes for the efficient computation of a narrowband matching cost volume. the minimisation framework is applied to solve problems in stereo matching, stereo-temporal reconstruction, motion estimation, 2D image registration and 3D image registration. This thesis establishes Iterated Dynamic Programming as an efficient and effective energy minimisation scheme suitable for computer vision problems which involve finding correspondences across images. For 3D reconstruction from multiple view images with arbitrary camera placement, a novel volumetric modelling technique, Embedded Voxel Colouring, is presented that efficiently embeds all reconstructions of a 3D scene into a single output in a single scan of the volumetric space under exact visibility. An adaptive thresholding framework is also introduced for the computation of the optimal set of thresholds to obtain high quality 3D reconstructions. This thesis establishes the Embedded Voxel Colouring framework as a fast, efficient and effective method for 3D reconstruction from multiple view images.
Nuclear Medicine Images have comparatively poor spatial resolution, making it difficult to relate the functional information which they contain to precise anatomical structures. Anatomical structures useful in the interpretation of SPECT /PET Images were radiolabelled. PET/SPECT Images Provide functional information, whereas MRI mainly demonstrate morphology and anatomical. Fusion or Image Registration improves the information obtained by correlating images from various modalities. Brain Scan were studied on one or more occations using MRI and SPECT. The data were aligned using a point pair methods and surface matching. SPECT and MR Images was tested using a three dimensional water fillable Hoffman Brain Phantom with small marker and PET and MR Image was tested using a patient data. Registration of SPECT and MR Images is feasible and allows more accurate anatomic assessment of sites of abnormal uptake in radiolabeled studies. Point based registration was accurate and easily implemented three dimensional registration of multimodality data set for fusion of clinical anatomic and functional imaging modalities. Accuracy of a surface matching algorithm and homologous feature pair matching for three dimensional image registration of Single Photon Emission Computed Tomography Emission Computed Tomography (SPECT), Positron Emission Tomography (PET) and Magnetic Resonance Images(MRD was tested using a three dimensional water fill able brain phantom and Patients data. Transformation parameter for translation and scaling were determined by homologous feature point pair to match each SPECT and PET scan with MR images.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.14
no.1
/
pp.131-147
/
2020
RFID (Radio Frequency Identification) identifies a specific object by radio signals. As the tag provides a unique ID for the purpose of identification, RFID technology effectively solves the ambiguity and occlusion problem that challenges the laser or camera-based approach. This paper proposes an approach to track a moving object based on the integration of RFID and laser ranging information using a particle filter. To be precise, we split laser scan points into different clusters which contain the potential moving objects and calculate the radial velocity of each cluster. The velocity information is compared with the radial velocity estimated from RFID phase difference. In order to achieve the positioning of the moving object, we select a number of K best matching clusters to update the weights of the particle filter. To further improve the positioning accuracy, we incorporate RFID signal strength information into the particle filter using a pre-trained sensor model. The proposed approach is tested on a SCITOS service robot under different types of tags and various human velocities. The results show that fusion of signal strength and laser ranging information has significantly increased the positioning accuracy when compared to radial velocity matching-based or signal strength-based approaches. The proposed approach provides a solution for human machine interaction and object tracking, which has potential applications in many fields for example supermarkets, libraries, shopping malls, and exhibitions.
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.9
no.2
/
pp.93-102
/
1991
This study aims to develop techniques for generating Digital Elevation Model(DEM) from SPOT Computer Compatible Tape(CCT) data, so as to present an effective way of generation of DEM for large area. As the first phase of extracting ground heights from SPOT stereo digital data, the bundle adjustment technique was used to determine the satellite exterior orientation parameters. Because SPOT data has the characteristics of multiple perspective projection, exterior orientation Parameters were modelled as a function of scan lines. In the second phase, a normalized cross correlation matching technique was applied to search for the conjugate pixels ill stereo pairs. The preliminary study showed that the matching window size of 13$\times$13 was adequate. After image coordinates of the conjugate pixels were determined by the matching technique, the ground coordinates of the corresponding pixels were calculated by the space intersection method. Then DEM was generated by interpolations. In addtion an algorithm for the elimination of abnormal elevation was developed and applied. The algorithm was very effective to improve the accuracy of the generated DEM.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.