• Title/Summary/Keyword: saturated clay

Search Result 133, Processing Time 0.029 seconds

Effect of Fly Ash Application on the Saturated Hydraulic Conductivity of Soils with Different Soil Texture (석탄회(Fly ash) 처리가 토성(土性)이 다른 토양의 포화수리전도도(飽和水理傳導度)에 미치는 영향)

  • Kim, Jai-Joung;Hong, Soon-Dal
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.3
    • /
    • pp.279-284
    • /
    • 1999
  • Fly ash is the fine ash particles that are flying out of chimney of the thermoelectric power plant where coals are used as fuel. There are two kinds of fly ashes from anthracite and bituminous coal. By scanning electron microscope(SEM) morphological feature of fly ash was confirmed to the exact spherical particles with the diameter variation from the fine to the largest about $50{\mu}m$(mainly silty particle). Surface of anthracite ash particle was very smooth but that of bituminous was somewhat coarse. To find the utilization of fly ash for improving soil permeability, soils of 4 kinds of different texture, clay, clay loam, sandy clay loam and sand mere applied with 7 levels of fly ash: 0, 10, 20, 40, 60, 80, 100%(w/w) and their saturated hydraulic conductivity(Ks) were determined at each application by constant head method. In clay soil with low water permeability, Ks value was increased about 10 times from $10^{-8}$ to $10^{-7}m\;s^{-1}$ level with application of 10% fly ash and it was slightly increased with increasing fly ash application from 40 to 80%. In clay loam Ks value was about $10^{-7}m\;s^{-1}$ level and its value was not influenced by the fly ash application. In sandy clay loam with relatively high permeability, Ks value was decreased about 10 times from $10^{-5}$ to $10^{-6}m\;s^{-1}$ level with application of 10% fly ash and also decreased about 50 times from $10^{-5}$ to $5.0{\times}10^{-7}m\;s^{-1}$ with application of more than 20% fly ash. In sand with very high permeability, Ks value was decreased about 10 times from $10^{-4}$ to $10^{-5}m\;s^{-1}$ level with application of 10% fly ash and also decreased about 100 times from $10^{-4}$ to $10^{-6}m\;s^{-1}$ level with application of 20% fly ash and continuously decreased about 500 times from $10^{-4}$ to $5.0{\times}10^{-7}m\;s^{-1}$ level with application of more than 40% fly ash. In conclusion by fly ash application saturated hydraulic conductivity was increased in clay soil, on the contrary it was decreased in sandy soils. Fly ash may be used as a material for amelioration of soil permeability.

  • PDF

Strain rate effects on soil-geosynthetic interaction in fine-grained soil

  • Safa, Maryam;Maleka, Amin;Arjomand, Mohammad-Ali;Khorami, Masoud;Shariati, Mahdi
    • Geomechanics and Engineering
    • /
    • v.19 no.6
    • /
    • pp.533-542
    • /
    • 2019
  • Geosynthetic reinforced soil method in coarse-grained soils has been widely used in last decades. Two effective factors on soil-geosynthetic interaction are confining stresses and loading rate in clay. In terms of methodology, one pull-out test with four different strain rates, namely 0.75, 1.25, 1.75 and 2.25 mm/min, and three different normal stresses equal to 20, 50, and 80 kg have been performed on specimens with dimensions of 30×30×17 cm in the saturated, consolidated condition. The obtained results have demonstrated that activation of geosynthetic strength at contact surface depends on the applied stress. In addition, the increase in normal stress would increase the shear strength at contact surface between clay and geogrid. Moreover, it is concluded that the strain rate increment would increase the shear strength.

Loading Frequency Dependencies of Cyclic Shear Strength and Elastic Shear Modulus of Reconstituted Clay (재구성 점토의 반복전단강도 및 전단탄성계수의 재하 주파수 의존성)

  • Ishigaki, Shigenao;Yeon, Kyu-Seok;Kim, Yong-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.3
    • /
    • pp.73-79
    • /
    • 2010
  • In the present study, the loading frequency dependencies of cyclic shear strength and elastic shear modulus of reconstituted clay were examined by performing undrained cyclic triaxial tests and undrained cyclic triaxial tests to determine deformation properties. The result of undrained cyclic triaxial test of reconstituted and saturated clay shows that a faster frequency leads to higher stress amplitude ratio, but when the frequency becomes fast up to a certain point, the stress amplitude ratio will reach its maximum limit and the frequency dependence becomes insignificant. And also, the result of undrained cyclic triaxial deformation test shows a fact that a faster loading frequency leads to higher equivalent shear modules and smaller hysteresis damping ratio, and confirms the frequency dependence of cohesive soil. Meanwhile, the result of the creep test shows that continuing creep is created in the undrained cyclic triaxial test with slow loading frequency rate, and since loading rate becomes slower at the vicinity of the maximum and the minimum deviator stress due to sine wave loading, the vicinity of the maximum and the minimum deviator stress shall be more influenced by creep.

The Change in Geotechnical Properties of the Deposited Clay Contaminated by Leachate from Waste Disposals (침출수로 오염된 퇴적점토의 역학적 특성변화)

  • Ha, Kwang-Hyun;Lee, Sang-Eun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.3
    • /
    • pp.43-54
    • /
    • 2006
  • In this paper, the uniaxial, triaxial compression tests and consolidation tests on the clay sample substituted initial pore water for pollutant were performed to evaluate the change in geotechnical properties of the contaminated clay. The contaminant transport analysis on embankment type landfill using the MT3D model was also performed to evaluate the extent of transport and diffusion. There was tendency that strength, compressibility and permeability has increased with the increase in the concentration of NaCl solution. The increase in the strength and compressibility of sample saturated with leachate was higher than samples saturated with NaCl solution, but in the permeability coefficient was lower. As the result of contaminant transport analysis, the predicted concentration was in high with the increase in the initial concentration of $Cl^-$ ion and increased in a non-linear form. The transportation distance calculated with use of regression equation between the distance from contaminant source and the concentration of $Cl^-$ ion was increased with the increase in the initial concentration.

  • PDF

A Study on the Effect of clay Minerals on Clarification of Water (점토광물(粘土鑛物)이 정수(淨水)에 미치는 영향(影響)에 관한 연구(硏究))

  • Park, Byoung Yoon;Choi, Jyung
    • Current Research on Agriculture and Life Sciences
    • /
    • v.6
    • /
    • pp.93-97
    • /
    • 1988
  • The physico-chemical properties of clay minerals(Kaolinite, Montmorillonite) and the competitive adsorption of various cations in them were investigated as a basic research for the development of clean and hygienic water from hard and contaminated water. The cation adsorption forces of various cations in two clay minerals were high in the order of $Ca^{{+}{+}}$ > $Mg^{{+}{+}}$ > $K^+$ > $Na^+$, and the orders of cation selectivity coefficients(K) in Montmorillonite, calculated by Kerr's equation, were $^KCa^{{+}{+}}/K$ > $^KMg^{{+}{+}}/K$, $^KCa^{{+}{+}}/Mg$ > $^KK^+/Mg$. The amount of adsorbed cations was most high in Na-saturated Montmorillonite among several samples. So, in order to more effectively remove various divalent cations in hard and contaminated water, Na-saturated Montmorillonite is most desirable.

  • PDF

Introduction of Numerical Analysis Method for Calculation of Diffusion Property in Interlayer Water of Expansible Clay Mineral (팽창성 점토광물 내 층간수의 확산특성분석을 위한 수치해석학적 방법)

  • Choi, Jung-Hae;Chae, Byung-Gon;Chon, Chul-Min
    • Journal of the Mineralogical Society of Korea
    • /
    • v.25 no.4
    • /
    • pp.211-220
    • /
    • 2012
  • The numerical modeling and simulation have been used increasingly as tools for examining and interpreting the bulk structure and properties of materials. The use of molecular dynamics (MD) simulations to model the structure of materials is now both widespread and reasonably well understood. In this research, we introduced the numerical method to calculate the physico-chemical properties such as a diffusion coefficient and a viscosity of clay mineral. In this research, a series of MD calculations were performed for clay mineral and clay-water systems, appropriate to a saturated deep geological setting. Then, by using homogenization analysis (HA), the diffusion coefficients are calculated for conditions of the spatial distribution of the water viscosity associated with some configuration of clay minerals. This result of numerical analysis is quite similar to the previous experimental results. It means that the introduced numerical method is very useful to calculate the physico-chemical properties of clay minerals under various environmental conditions.

Strength properties of composite clay balls containing additives from industry wastes as new filter media in water treatment

  • Rajapakse, J.P.;Gallage, C.;Dareeju, B.;Madabhushi, G.;Fenner, R.
    • Geomechanics and Engineering
    • /
    • v.8 no.6
    • /
    • pp.859-872
    • /
    • 2015
  • Pebble matrix filtration (PMF) is a water treatment technology that can remove suspended solids in highly turbid surface water during heavy storms. PMF typically uses sand and natural pebbles as filter media. Hand-made clay pebbles (balls) can be used as alternatives to natural pebbles in PMF treatment plants, where natural pebbles are not readily available. Since the high turbidity is a seasonal problem that occurs during heavy rains, the use of newly developed composite clay balls instead of pure clay balls have the advantage of removing other pollutants such as natural organic matter (NOM) during other times. Only the strength properties of composite clay balls are described here as the pollutant removal is beyond the scope of this paper. These new composite clay balls must be able to withstand dead and live loads under dry and saturated conditions in a filter assembly. Absence of a standard ball preparation process and expected strength properties of composite clay balls were the main reasons behind the present study. Five different raw materials from industry wastes: Red Mud (RM), Water Treatment Alum Sludge (S), Shredded Paper (SP), Saw Dust (SD), and Sugar Mulch (SM) were added to common clay brick mix (BM) in different proportions. In an effort to minimize costs, in this study clay balls were fired to $1100^{\circ}C$ at a local brick factory together with their bricks. A comprehensive experimental program was performed to evaluate crushing strength of composite hand-made clay balls, using uniaxial compression test to establish the best material combination on the basis of strength properties for designing sustainable filter media for water treatment plants. Performance at both construction and operating stages were considered by analyzing both strength properties under fully dry conditions and strength degradation after saturation in a water bath. The BM-75% as the main component produced optimum combination in terms of workability and strength. With the material combination of BM-75% and additives-25%, the use of Red Mud and water treatment sludge as additives produced the highest and lowest strength of composite clay balls, with a failure load of 5.4 kN and 1.4 kN respectively. However, this lower value of 1.4 kN is much higher than the effective load on each clay ball of 0.04 kN in a typical filter assembly (safety factor of 35), therefore, can still be used as a suitable filter material for enhanced pollutant removal.

A Practical Approach of Stress Path Method for Rational Settlement Estimation of Saturated Clay Deposit : Part II (Settlement Estimation Procedure and Application Examples) (포화 점성토지반 침하량의 합리적 평가를 위한 실용적인 응력경로법 적용방법 : Part II (침하량 평가절차와 적용예제))

  • Kim Chang-Youb;Chung Choong-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.4
    • /
    • pp.99-114
    • /
    • 2005
  • In Part I of this paper, a conceptual approach of the stress path method was newly proposed for a rational estimation of settlements of saturated clay deposits. A detailed procedure for effective evaluation and use of settlement-related characteristic deformation behaviors was developed in order to provide practicality to the new approach. In this Part II, on the basis of the results of Part 1, the concept of the new approach was embodied in the form of a detailed settlement estimation procedure. The applicability and usefulness of the new procedure were strongly supported by various application examples. In addition, possible errors of other conventional settlement estimation methods were investigated by comparing with the new procedure. Because of its flexible applicability for wide range of field conditions, the new procedure will have great usefulness in the practical side. For example, a reasonable foundation design based on allowable settlement criteria can be easily performed and modification of design factors can be readily reflected even during the subsequent construction stage. Especially, the new procedure will be of great use for preliminary work in a large scale construction site where various structures are planned to be constructed on a nearly identical ground condition.

The Evaluation of Seepage Characteristics in Reinforced Embankment Constructed on Low Permeable Clay Layer Through Centrifuge Model Tests (원심모형실험을 활용한 투수성이 낮은 기초지반에 위치한 보축 제방에서의 침투 거동)

  • Jin, Seok-Woo;Choo, Yun-Wook;Kim, Young-Muk;Kim, Dong-Soo;Im, Eun-Sang
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.5
    • /
    • pp.27-39
    • /
    • 2012
  • In this paper, a series of centrifuge tests were performed to evaluate the seepage characteristic of reinforced embankment. The centrifuge models simulated an actual embankment reinforced by enlargement of levee cross-section. The centrifuge models have the same conditions except the locations of enlargement with low permeable material : water-side and land-side. In addition, the prototype embankment is constructed on low permeable clay layer. In the case of water-side reinforcement, the reinforced zone makes water head down and the saturated zone of embankment propagates slowly. In the case of land-side reinforcement embankment, the saturated zone enlarged relatively faster but the amount of exit water at land-side toe was very small because of the land-side reinforcement zone. The low permeable clay foundation layer was being continuously saturated by the inflow from the embankment as well as the uplift flow from the permeable layer induced by the excess pore water pressure.

Settlement Behavior of Strip Foundation on Geogrid Reinforced Clay under Cyclic Loading (Geogrid로 보강된 점토지반에 축조된 대상기초의 반복하중하에서의 침하거동)

  • 신은철;다스브라지앰
    • Geotechnical Engineering
    • /
    • v.11 no.3
    • /
    • pp.27-36
    • /
    • 1995
  • Laboratory model tests to determine the permanent settlement of a surface strip foundati on supported by geogrid -reinforced saturated clay and subjected to a low -frequency cyclic load were performed. In conducting the test, the foundation was initially subjected to an allowable static load. The cyclic load was then super -imposed over the static load. The variation of the maximum permanent settlement with the intensity of the static load and the intensity of the amplitude of the cyclic load are also presented.

  • PDF