DOI QR코드

DOI QR Code

팽창성 점토광물 내 층간수의 확산특성분석을 위한 수치해석학적 방법

Introduction of Numerical Analysis Method for Calculation of Diffusion Property in Interlayer Water of Expansible Clay Mineral

  • 최정해 (한국지질자원연구원 지구환경연구본부 지질재해연구실) ;
  • 채병곤 (한국지질자원연구원 지구환경연구본부 지질재해연구실) ;
  • 전철민 (한국지질자원연구원 지구환경연구본부 지질재해연구실)
  • Choi, Jung-Hae (Geologic Environment Division, Geologic Hazards Department, KIGAM) ;
  • Chae, Byung-Gon (Geologic Environment Division, Geologic Hazards Department, KIGAM) ;
  • Chon, Chul-Min (Geologic Environment Division, Geologic Hazards Department, KIGAM)
  • 투고 : 2012.11.27
  • 심사 : 2012.12.24
  • 발행 : 2012.12.31

초록

최근 물질의 특성과 구조를 해석하기 위해서 수치해석학적 모델과 컴퓨터 시뮬레이션이 많이 사용된다. 이러한 관점에서 물질의 미세구조를 해석하는 데 있어 분자동역학 해석법은 매우 유용한 방법이다. 이번 연구에서는 점토광물에 대한 확산계수 및 점착력과 같은 물리화학적 특성을 계산하기 위한 수치해석학적 방법을 소개한다. 이번연구에서 지질학적으로 심부에 위치하는 포화된 점토광물과 물을 포함한 점토광물에 대한 특성을 분자동역학을 이용해서 계산하고 균질화해석법을 활용하여 점착력과 같은 외부조건에 따라 결정되는 점토광물의 확산거동을 해석하였다. 그 결과 수치해석에 의한 해석결과 값과 기존의 실내 투수실험에 의한 결과 값이 매우 흡사한 결과를 보인다는 것을 알 수 있다. 이는 여러 가지 복합적인 조건하에서의 점토광물의 물리화학적 거동을 해석하는 데 수치해석학적 방법이 매우 유용하게 사용될 수 있다는 것을 의미한다.

The numerical modeling and simulation have been used increasingly as tools for examining and interpreting the bulk structure and properties of materials. The use of molecular dynamics (MD) simulations to model the structure of materials is now both widespread and reasonably well understood. In this research, we introduced the numerical method to calculate the physico-chemical properties such as a diffusion coefficient and a viscosity of clay mineral. In this research, a series of MD calculations were performed for clay mineral and clay-water systems, appropriate to a saturated deep geological setting. Then, by using homogenization analysis (HA), the diffusion coefficients are calculated for conditions of the spatial distribution of the water viscosity associated with some configuration of clay minerals. This result of numerical analysis is quite similar to the previous experimental results. It means that the introduced numerical method is very useful to calculate the physico-chemical properties of clay minerals under various environmental conditions.

키워드

참고문헌

  1. Brindley, G.W. (1980) Order-disorder in clay mineral structures: in Crystal Structures of Clay Minerals and their X-ray Identification, G. W. Brindley and G. Brown, eds., Monograph No. 5, Mineralogical Society, London, 125-196.
  2. Choi, J.H., Anwar, A.H.M.F., Kawamura, K., and Ichikawa Y. (2009) Transport Phenomena in kaolinite clay: Molecular simulation, homogenization analysis and similitude law, International Journal for Numerical and Analytical Methods in Geomechanics, 33, 687-707. https://doi.org/10.1002/nag.744
  3. Du, J. and Cormack, A.N. (2004) The medium range structure of sodium silicate glasses: a molecular dynamics simulation. Journal of Non-Crystalline Solids, 349, 66-79. https://doi.org/10.1016/j.jnoncrysol.2004.08.264
  4. Guggenheim S. and Martin R.T. (1995) Definition of clay and clay mineral. Joint report of the AIPEA nomenclature and CMS nomenclature committees. Clays Clay Minerals, 43, 255-256. https://doi.org/10.1346/CCMN.1995.0430213
  5. Ichikawa, Y., Kawamura, K., Nakano, M., Kitayama, K., and Kawamura, H. (1999) Seepage and consolidation of bentonite saturated with pure- or saltwater by the method of unified molecular dynamics and homogenization analysis, Engineering Geology, 60, 127-138.
  6. Kawamura, K., Ichikawa, Y., Nakano, M., Kitayama, K., and Kawamura, H. (1999) Swelling properties of smectite up to $90^{\circ}C$: in situ X-ray diffraction experiments and molecular dynamics simulations, Engineering Geology, 54, 75-79. https://doi.org/10.1016/S0013-7952(99)00063-0
  7. Leed, E.A. and Pantano, C.G. (2003) Computer modeling of water adsorption on silica and silicate glass fracture surfaces, Journal of Non-Crystalline Solids, 349, 66-79.
  8. Mitchell, J.K. and Soga, K. (1992) Fundamentals of Soil Behavior. Wiley: New York, 1-82.
  9. Pusch, R. (1994) Waste Disposal in Rock. Elsevier: Amsterdam, 108p.