• Title/Summary/Keyword: sapphire

Search Result 829, Processing Time 0.028 seconds

Preparation of p-type transparent conducting $CuGaO_2$ thin film by DC/RF sputtering (DC-RF 스퍼터링에 의한 p형 투명 전도성 $CuGaO_2$ 박막의 제조)

  • Park, Hyun-Jun;Kwak, Chang-Gon;Kim, Sei-Ki;Ji, Mi-Jung;Lee, Mi-Jae;Choi, Byung-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.48-48
    • /
    • 2007
  • P-type transparent conducting $CuGaO_2$ thin films have been prepared by DC/RF sputtering using Quartz(0001) and sapphire(0001) substrates. The target was fabricated by heating a stoichiometric mixture of CuO and $Ga_2O_3$ at 1373K for 12h under $N_2$ atmosphere. The film were deposited under mixture gas of Ar and $O_2(Ar:O_2=4:1)$ during 10~30min. and the as-deposited films were annealed at 1123K and $N_2$ atmosphere. Room temperature conductivity and the activation energy of the sintered body in the temperature range of 223K ~ 423K were 0 004S/cm, 1.9eV, respectively. XRD revealed that all of the as-deposited films were amorphous. Heating of the films deposited on Quartz substrates above 1123K resulted in crystallization with a second phase of $CuSiO_3$, which was assumed owing to reaction with Quartz substrate. The single phase of $CuGaO_2$ was obtained at the film deposited on the sapphire substrates. The transmittance after annealing of DC- and RF-sputtered films were 55~75% at 550nm. From the transmittance and reflectance measurement. the direct band gap of the DC/RF-sputtered films were 3.63eV and 3.57eV. and there was little difference between DC and RF sputtered films.

  • PDF

Surface Analysis of Plasma Pretreated Sapphire Substrate for Aluminum Nitride Buffer Layer

  • Jeong, Woo Seop;Kim, Dae-Sik;Cho, Seung Hee;Kim, Chul;Jhin, Junggeun;Byun, Dongjin
    • Korean Journal of Materials Research
    • /
    • v.27 no.12
    • /
    • pp.699-704
    • /
    • 2017
  • Recently, the use of an aluminum nitride(AlN) buffer layer has been actively studied for fabricating a high quality gallium nitride(GaN) template for high efficiency Light Emitting Diode(LED) production. We confirmed that AlN deposition after $N_2$ plasma treatment of the substrate has a positive influence on GaN epitaxial growth. In this study, $N_2$ plasma treatment was performed on a commercial patterned sapphire substrate by RF magnetron sputtering equipment. GaN was grown by metal organic chemical vapor deposition(MOCVD). The surface treated with $N_2$ plasma was analyzed by x-ray photoelectron spectroscopy(XPS) to determine the binding energy. The XPS results indicated the surface was changed from $Al_2O_3$ to AlN and AlON, and we confirmed that the thickness of the pretreated layer was about 1 nm using high resolution transmission electron microscopy(HR-TEM). The AlN buffer layer deposited on the grown pretreated layer had lower crystallinity than the as-treated PSS. Therefore, the surface $N_2$ plasma treatment on PSS resulted in a reduction in the crystallinity of the AlN buffer layer, which can improve the epitaxial growth quality of the GaN template.

Development of Atomic Nitrogen Source Based on a Dielectric Barrier Discharge and Low Temperature Growth GaN (유전체장벽방전에 의한 질소함유 활성종의 개발 및 저온 GaN 박막 성장)

  • Kim, Joo-Sung;Byun, Dong-Jin;Kim, Jin-Sang;Kum, Dong-Wha
    • Korean Journal of Materials Research
    • /
    • v.9 no.12
    • /
    • pp.1216-1221
    • /
    • 1999
  • GaN films were deposited on sapphire [$Al_2O_3(0001)$] substrates at relatively low temperature by MOCVD using N-atom source based on a Dielectric Barrier Discharged method. Ammonia gas($NH_3$is commonly used as an N-source to grow GaN films in conventional MOCVD process, and heating to high temperature is required to provide sufficient dissociation of $NH_3$. We used a dielectric barrier discharge method instead of $NH_3$ to grow GaN film relatively low temperature. DBD is a type of discharge, which have at least one dielectric material as a barrier between electrode. DBD is a type of controlled microarc that can be operated at relatively high gas pressure. Crystallinity and surface morphology depend on growth temperature and buffer layer growth. With the DBD-MOCVD method, wurtzite GaN which is dominated by the (0001) reflection was successfully grown on sapphire substrate even at $700^{\circ}C$.

  • PDF

A Study on the Selection Area Growth of GaN on Non-Planar Substrate by MOCVD (MOCVD를 이용한 비평면구조 기판에서의 GaN 선택적 성장특성연구)

  • Lee, Jae-In;Geum, Dong-Hwa;Yu, Ji-Beom
    • Korean Journal of Materials Research
    • /
    • v.9 no.3
    • /
    • pp.257-262
    • /
    • 1999
  • The selective area growth of GaN by metal organic chemical vapor deposition has been carried out on GaN/ sapphire substrate using $SiO_2$ mask. We investgated the effect of growth parameters such as flow rate of $NH_3$(500­~1300sccm) and the growth temperature(TEX>$950~1060^{\circ}C$) on the growth selectivity and characteristics of GaN using the Scanning Electron Microscopy(SEM). The selectivity of GaN improved as flow rate of NH, and growth temperature in­creased. But the grown GaN shapes on the substrate windows was independent of the flow rate of $NH_3$. On the pattern shapes such as circle, stripe, and radiational pattern(rotate the stripe pattern by $30^{\circ}, 45^{\circ}$), we observed the hexagonal pyramid, the lateral over growth on the mask layer, and the difference of the lateral growth rate depending on growth condition.

  • PDF

Chemical Mechanical Polishing: A Selective Review of R&D Trends in Abrasive Particle Behaviors and Wafer Materials (화학기계적 연마기술 연구개발 동향: 입자 거동과 기판소재를 중심으로)

  • Lee, Hyunseop;Sung, In-Ha
    • Tribology and Lubricants
    • /
    • v.35 no.5
    • /
    • pp.274-285
    • /
    • 2019
  • Chemical mechanical polishing (CMP), which is a material removal process involving chemical surface reactions and mechanical abrasive action, is an essential manufacturing process for obtaining high-quality semiconductor surfaces with ultrahigh precision features. Recent rapid growth in the industries of digital devices and semiconductors has accelerated the demands for processing of various substrate and film materials. In addition, to solve many issues and challenges related to high integration such as micro-defects, non-uniformity, and post-process cleaning, it has become increasingly necessary to approach and understand the processing mechanisms for various substrate materials and abrasive particle behaviors from a tribological point of view. Based on these backgrounds, we review recent CMP R&D trends in this study. We examine experimental and analytical studies with a focus on substrate materials and abrasive particles. For the reduction of micro-scratch generation, understanding the correlation between friction and the generation mechanism by abrasive particle behaviors is critical. Furthermore, the contact stiffness at the wafer-particle (slurry)-pad interface should be carefully considered. Regarding substrate materials, recent research trends and technologies have been introduced that focus on sapphire (${\alpha}$-alumina, $Al_2O_3$), silicon carbide (SiC), and gallium nitride (GaN), which are used for organic light emitting devices. High-speed processing technology that does not generate surface defects should be developed for low-cost production of various substrates. For this purpose, effective methods for reducing and removing surface residues and deformed layers should be explored through tribological approaches. Finally, we present future challenges and issues related to the CMP process from a tribological perspective.

Intracavity frequency doubling of a tunable Ti:Sapphire laser using a lithium triborate$(LiB_3O_5, LBO)$ crystal (Lithium Triborate$(LiB_3O_5, LBO)$ 결정을 이용한 파장가변 티타늄 사파이어 레이저의 내부공진기 진동수 배가)

  • 추한태;박차곤;김규욱
    • Korean Journal of Optics and Photonics
    • /
    • v.12 no.2
    • /
    • pp.143-149
    • /
    • 2001
  • We performed the intracavity frequency-doubling of a tunable continuous-wave Ti:sapphire laser using a lithium triborate $(LiB_3O_5, LBO)$ crystal. For an efficient intracavity frequency-doubling, we measured the spectral and the angular bandwidth about the $\theta$-direction of LBO crystal. The measured values at a fundamental wavelength of 800 nm were 1.54 nm.cm and 3.8 mrad.cm, respectively. As a result of an intracavity frequency-doubling, we obtained the second-harmonic generation output power of 5.3 mW at 400 nm with the full width at half maximum(FWHM) of 0.089 nm from the fundamental output power of 185 mW at 800 nm. The frequency-doubled output was tuned from 397 nm to 403 nm.403 nm.

  • PDF

Melting of Al2O3 powder using the skull melting method (Skull melting법에 의한 Al2O3 파우더 용융)

  • Choi, Hyun-Min;Kim, Young-Chool;Seok, Jeong-Won
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.1
    • /
    • pp.24-31
    • /
    • 2019
  • The current study demonstrates an efficient procedure to create ingots from $Al_2O_3$ powder using the skull melting method to use these ingots as a starting material in conventional methods for growing synthetic single-crystal sapphire. Dimension of the cold crucible was 24 cm in inner diameter and 30 cm in inner height, 15 kg of $Al_2O_3$ powder was completely melted within 1 h at an oscillation frequency of 2.75 MHz, maintained in the molten state for 3 h, and finally air-cooled. The areal density and components of the cooled ingot by parts were analyzed through scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS). The areal density and $Al_2O_3$ content of the ingot were related to the temperature distribution inside the cold crucible during high-frequency induction heating, and the area with high temperature was high tends to be high in areal density and purity.

A study on the nitridation of GaN crystal growth by HVPE method (HVPE 법을 활용한 GaN 성장 시 질화처리에 관한 연구)

  • Lee, Seung Hoon;Lee, Joo Hyung;Lee, Hee Ae;Oh, Nuri;Yi, Sung Chul;Kang, Hyo Sang;Lee, Seong Kuk;Yang, Jae Duk;Park, Jae Hwa
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.4
    • /
    • pp.149-153
    • /
    • 2019
  • HVPE is one of the GaN single crystal manufacturing methods which has been commercially widely used due to its high growth rate. HVPE method consists of a number of processes, in particular the nitridation of the substrate prior to GaN growth has a significant effect on the crystalline quality of the manufactured GaN single crystal. In this study, we investigated the effect of nitridation for crystalline quality of GaN when it was grown on the sapphire substrate. The whole growth conditions except for the nitridation process were the same, and the gas flow rate supplied to the sapphire substrate was variously changed during the nitridation. Here, we examined the effect of nitridation via the surface characterization of GaN single crystal grown by HVPE.

AlInGaN - based multiple quantum well laser diodes for Blu-ray Disc application

  • O. H. Nam;K. H. Ha;J. S. Kwak;Lee, S.N.;Park, K.K.;T. H. Chang;S. H. Chae;Lee, W.S.;Y. J. Sung;Paek H.S.;Chae J.H.;Sakong T.;Kim, Y.;Park, Y.
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.20-20
    • /
    • 2003
  • We developed 30 ㎽-AlInGaN based violet laser diodes. The fabrication procedures of the laser diodes are described as follows. Firstly, GaN layers having very low defect density were grown on sapphire substrates by lateral epitaxial overgrowth method. The typical dislocation density was about 1-3$\times$10$^{6}$ /$\textrm{cm}^2$ at the wing region. Secondly, AlInGaN laser structures were grown on LEO-GaN/sapphire substrates by MOCVD. UV activation method, instead of conventional annealing, was conducted to achieve good p-type conduction. Thirdly, ridge stripe laser structures were fabricated. The cavity mirrors were formed by cleaving method. Three pairs of SiO$_2$ and TiO$_2$ layers were deposited on the rear facet for mirror coating. Lastly, laser diode chips were mounted on AlN submount wafers by epi-down bonding method. The lifetime of the laser diodes was over 10,000 hrs at room temperature under automatic power controlled condition. We expect the performance of the LDs to be improved by the optimization of the growth and fabrication process. The detailed characteristics and important issues of the laser diodes will be discussed at the conference.

  • PDF

Fabrication and Optical Properties of (3-mercaptopropyl) Trimethoxysilane (MPTMS)-assisted Silver Nanofilm on Various Substrates (다양한 투명 기판의 3-MPTMS 처리에 의한 은 나노 박막의 광 특성 변화 연구)

  • Hyunsung Choi;Seungjun Oh;Doyeon Kil;Taewon Goo;Young-Mi Bahk
    • Korean Journal of Optics and Photonics
    • /
    • v.34 no.6
    • /
    • pp.283-288
    • /
    • 2023
  • We investigate the optical and electrical properties of silver nanofilms deposited on transparent substrates such as quartz, sapphire, and slide glass treated with (3-mercaptopropyl) trimethoxysilane (MPTMS). The effect of MPTMS treatment on physical properties is studied through scanning electron microscope (SEM) images, UV-visible transmission, and current-voltage measurements. The SEM images show morphology change of the silver nanofilm, and the UV-visible transmission spectra reveal that the localized surface-plasmon resonance effect is reduced due to the morphology change. These results imply that the uniformity of silver nanofilm is improved by MPTMS treatment for various transparent substrates, resulting in a 100-fold decrease in the electrical resistance of the silver nanofilm.