DOI QR코드

DOI QR Code

Fabrication and Optical Properties of (3-mercaptopropyl) Trimethoxysilane (MPTMS)-assisted Silver Nanofilm on Various Substrates

다양한 투명 기판의 3-MPTMS 처리에 의한 은 나노 박막의 광 특성 변화 연구

  • Hyunsung Choi (Department of Physics, Incheon National University) ;
  • Seungjun Oh (Department of Physics, Incheon National University) ;
  • Doyeon Kil (Department of Physics, Incheon National University) ;
  • Taewon Goo (Department of Physics, Incheon National University) ;
  • Young-Mi Bahk (Department of Physics, Incheon National University)
  • Received : 2023.09.25
  • Accepted : 2023.10.20
  • Published : 2023.12.25

Abstract

We investigate the optical and electrical properties of silver nanofilms deposited on transparent substrates such as quartz, sapphire, and slide glass treated with (3-mercaptopropyl) trimethoxysilane (MPTMS). The effect of MPTMS treatment on physical properties is studied through scanning electron microscope (SEM) images, UV-visible transmission, and current-voltage measurements. The SEM images show morphology change of the silver nanofilm, and the UV-visible transmission spectra reveal that the localized surface-plasmon resonance effect is reduced due to the morphology change. These results imply that the uniformity of silver nanofilm is improved by MPTMS treatment for various transparent substrates, resulting in a 100-fold decrease in the electrical resistance of the silver nanofilm.

본 연구에서는 quartz, sapphire, slide glass와 같이 투명한 기판 위에 (3-mercaptopropyl) trimethoxysilane (MPTMS)를 처리하고 나노미터 두께로 은을 증착하여 형성된 은 나노 박막의 광학적, 전기적 특성을 탐구한다. 기판의 MPTMS 증착에 따라 각각 5, 7, 9, 13 nm 두께를 갖는 은 나노 박막의 표면 형태 변화를 전자현미경을 통해 확인하고, UV-visible 전자기파 영역의 투과 측정 실험을 통해 금속 나노 박막에서 나타나는 국소 표면 플라즈몬에 의한 흡수 효과가 줄어드는 것을 확인하였다. 이는 MPTMS에 의해 나노미터 두께의 금속 박막이 균일하게 형성된 것을 의미한다. 또한 MPTMS 증착 시간을 30분부터 77시간까지 조절함으로써 UV-visible 투과율과 전기전도도 변화를 측정하여 균일한 금속 나노 박막 형성을 위한 MPTMS의 증착 조건에 대해 탐구한다. 본 연구 결과는 투명 기판 위 균일한 금속 나노 박막 형성에 대한 연구 및 고성능 나노 박막 전극 개발 등과 같은 응용 분야에 도움이 될 것이다.

Keywords

Acknowledgement

저자는 Enkhjargal Enkhbayar, 김준호 연구원의 금속 증착 및 전기전도도 측정 실험 지원과 최수봉 연구원의 UV-visible 투과 측정 실험 지원에 감사드립니다.

References

  1. R. A. Maniyara, D. Rodrigo, R. Yu, J. Canet-Ferrer, D. S. Ghosh, R. Yongsunthon, D. E. Baker, A. Rezikyan, F. J. G. de Abajo, and V. Pruneri, "Tunable plasmons in ultrathin metal films," Nat. Photonics 13, 328-333 (2019). https://doi.org/10.1038/s41566-019-0366-x
  2. Y. Lee, D. Kim, J. Jeong, J. Kim, V. Shmid, O. Korotchenkov, P. Vasa, Y.-M. Bahk, and D.-S. Kim, "Enhanced terahertz conductivity in ultra-thin gold film deposited onto (3-mercaptopropyl) trimethoxysilane (MPTMS)-coated Si substrates," Sci. Rep. 9, 15025 (2019).
  3. D. Martinez-Cercos, B. Paulillo, R. A. Maniyara, A. Rezikyan, I. Bhattacharyya, P. Mazumder, and V. Pruneri, "Ultrathin metals on a transparent seed and application to infrared reflectors," ACS Appl. Mater. Interfaces 13, 46990-46997 (2021). https://doi.org/10.1021/acsami.1c10824
  4. M. M. Haddadi, B. Das, J. Jeong, S. Kim, and D.-S. Kim, "Near-maximum microwave absorption in a thin metal film at the pseudo-free-standing limit," Sci. Rep. 12, 18386 (2022).
  5. G. Lee, S. Jang, Y.-B. Kim, D. Cho, D. Jeong, S. Chae, J.-M. Myoung, H. Kim, S.-K. Kim, and J.-O Lee, "Ultrathin metal film on graphene for percolation-threshold-limited thermal emissivity control," Adv. Mater. 35, 2301227 (2023).
  6. A. K. Mahapatro, A. Scott, A. Manning, and D. B. Janes, "Gold surface with sub-nm roughness realized by evaporation on a molecular adhesion monolayer," Appl. Phys. Lett. 88, 151917 (2006).
  7. W. C. Bigelow, D. L. Pickett, and W. A. Zisman, "Oleophobic monolayers: I. Films adsorbed from solution in non-polar liquids," J. Colloid Sci. 1, 513-538 (1946). https://doi.org/10.1016/0095-8522(46)90059-1
  8. M. M. Sung, "Self-assembled monolayers, SAMs," Electron. Mater. Lett. 3, 137-145 (2007).
  9. D. K. Aswal, S. Lenfant, D. Guerin, J. V. Yakhmi, and D. Vuillaume, "A tunnel current in self-assembled monolayers of 3-mercaptopropyltrimethoxysilane," Small 1, 725-729 (2005). https://doi.org/10.1002/smll.200500052
  10. P. K. Gothe, D. Gaur, and V. G. Achanta, "MPTMS self-assembled monolayer deposition for ultra-thin gold films for plasmonics," J. Phys. Commun. 2, 035005 (2018).
  11. K. Stawicka, M. Gierada, J. Gajewska, F. Tielens, and M. Ziolek, "The importance of residual water for the reactivity of MPTMS with silica on the example of SBA-15," Appl. Surf. Sci. 513, 145802 (2020).
  12. K. A. Willets and R. P. Van Duyne, "Localized surface plasmon resonance spectroscopy and sensing," Annu. Rev. Phys. Chem. 58, 267-297 (2007). https://doi.org/10.1146/annurev.physchem.58.032806.104607
  13. H. K. Kumar, N. Venkatesh, H. Bhowmik, and A. Kuila, "Metallic nanoparticle: A review," Biomed. J. Sci. Tech. Res. 4, 3765-3775 (2018).
  14. A. J. Haes, C. L. Haynes, A. D. McFarland, G. C. Schatz, R. P. Van Duyne, and S. Zou, "Plasmonic materials for surface-enhanced sensing and spectroscopy," MRS Bull. 30, 368-375 (2005). https://doi.org/10.1557/mrs2005.100
  15. T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, "Nanosphere lithography: Tunable localized surface plasmon resonance spectra of silver nanoparticles," J. Phys. Chem. B 104, 10549-10556 (2000). https://doi.org/10.1021/jp002435e
  16. S. T. Sundari, S. Chandra, and A. K. Tyagi, "Temperature dependent optical properties of silver from spectroscopic ellipsometry and density functional theory calculations," J. Appl. Phys. 114, 033515 (2013).
  17. Y. S. Lee and S. Y. Lee, "Effect of Ag formation mechanism on the change of optical properties of SiInZnO/Ag/SiInZnO multilayer thin films," J. Korean Inst. Electr. Electron. Mater. Eng. 26, 347-350 (2013). https://doi.org/10.4313/JKEM.2013.26.5.347
  18. A. Axelevitch, B. Gorenstein, and G. Golan, "Investigation of optical transmission in thin metal films," Phys. Procedia 32, 1-13 (2012). https://doi.org/10.1016/j.phpro.2012.03.510
  19. K. M. Kosuda, J. M. Bingham, K. L. Wustholz, and R. P. Van Duyne, "Nanostructures and surface-enhanced Raman spectroscopy," Compr. Nanosci. Technol. 3, 263-301 (2011).
  20. M. Kawamura, T. Fudei, and Y. Abe, "Growth of Ag thin films on glass substrates with a 3-mercaptopropyltrimethoxysilane (MPTMS) interlayer," J. Phys.: Conf. Ser. 417, 012004 (2013).